- 构建医学文献智能助手:基于 LangChain 的专业领域 RAG 系统实践
前言在当今医疗科技快速发展的时代,每天都有数以千计的医学研究成果在全球范围内发表。从临床试验报告到基础研究论文,从流行病学调查到药物研发数据,这些专业文献承载着推动医学进步的重要知识。然而,面对如此海量且专业性极强的文献资料,医疗从业者往往感到力不从心。如何在有限的时间内,准确把握文献核心价值,并将其转化为临床实践的指导?这个问题一直困扰着整个医疗行业。1.项目背景与业务价值1.1医学文献阅读的困
- 疲劳检测与行为分析:工厂智能化实践
智驱力人工智能
安全智慧城市行为识别人员属性识别疲劳检测抽烟检测徘徊检测
视觉分析算法赋能工厂疲劳与安全管理一、背景与需求在制造业中,疲劳作业是导致安全事故和效率下降的核心因素之一。传统人工巡检存在覆盖面不足、响应滞后等问题,而基于视觉分析的智能监控系统通过多算法协同,可实现全天候、高精度的疲劳检测与行为管理。本文围绕疲劳检测算法、人员计数算法、抽烟检测算法及徘徊检测算法,探讨其在工厂场景中的技术实现与应用价值。二、技术实现疲劳检测算法原理:基于PERCLOS(眼睑闭合
- GPT-4o重磅升级!只需一条指令,教你秒出SCI级专业科研图!
智写AI
AI学术写作指南信息可视化人工智能
经过数月爆肝,七哥终于完成专业的学术AI使用教程,估计也有个80万字的详细操作指南。分为多个细分的专业写作场景,跟着一步一步操作,借助ChatGPT做学术、干科研、写论文、课题申报都变得超简单。欢迎加我交流(yida985),祝你一臂之力。七哥之前写过关于用AI生成流程图的教程,不过需要借助其他软件才能搞定完美的流程图。近期GPT-4o全新推出了“生图功能”,这个生图的过程就更加方便轻松了,全能G
- 潜入思维的海洋:SoftCoT++如何让语言模型更聪明
步子哥
智能涌现语言模型人工智能自然语言处理
在人工智能的浩瀚星空下,大型语言模型(LLMs)如同一颗颗璀璨的恒星,照亮了从文本生成到复杂推理的广阔领域。然而,这些模型在推理任务中往往像是在迷雾中航行——尽管它们能抵达目的地,却常常因为固定的思维路径而错过更优的航线。2025年5月,一篇题为《SoftCoT++:Test-TimeScalingwithSoftChain-of-ThoughtReasoning》的论文如同一盏明灯,照亮了如何让
- 【基于ESP32-S3的Modbus RTU单双精度浮点数验证方案】
2345VOR
#Arduino小项目开发工业通讯esp32s3ModBusRTU浮点数
基于ESP32-S3的ModbusRTU单双精度浮点数验证方案一、核心功能升级在工业自动化场景中,单纯的整型数据已无法满足高精度测量需求。本文在原有ADC数据采集方案基础上,通过ModbusRTU协议扩展实现以下功能升级:新增1路16位浮点数(3.3V量程)新增1路32位双精度浮点数(±2.5V量程)保持原有4通道ADC数据传输本方案在原有ADC数据采集基础上,重点实现单双精度浮点数(float&
- PROFIBUS DP转EtherNet/IP网关:精密医疗器械粘合密封的质量守护者
JIANGHONGZN
PROFIBUSETHERNET/IPDP协议网关工业通讯机器人
在医疗器械制造领域,精密部件(如输液器接头、植入体密封壳)的粘合与密封工艺对可靠性和一致性要求近乎苛刻。这类工艺通常由高速、高精度的涂胶机器人执行,而其精准动作离不开与核心控制系统(如西门子PLC)的无缝数据交互。当产线中同时存在西门子PROFIBUSDP网络与支持EtherNet/IP的机器人时,专用协议转换网关便成为确保“数据血液”畅通的关键设备。网关的核心角色:协议翻译与无缝桥接此类网关设备
- 图扑软件智慧云展厅,开启数字化展馆新模式
智慧园区
可视化5g人工智能大数据安全云计算
随着疫情的影响以及新兴技术的不断发展,展会的发展形式也逐渐从线下转向线上。通过“云”上启动、云端互动、双线共频的形式开展。通过应用大数据、人工智能、沉浸式交互等多重技术手段,构建数据共享、信息互通、精准匹配的高精度“云展厅”,突破时空壁垒限制。图扑软件运用HT强大的渲染功能,数字孪生“云展位”,1:1复现实际展厅内部独特的结构造型和建筑特色。也可以第一人称视角漫游,模拟用户在展厅内的参观场景,在保
- 基于机器学习的智能文本分类技术研究与应用
在当今数字化时代,文本数据的爆炸式增长给信息管理和知识发现带来了巨大的挑战。从新闻文章、社交媒体帖子到企业文档和学术论文,海量的文本数据需要高效地分类和管理,以便用户能够快速找到所需信息。传统的文本分类方法主要依赖于人工规则和关键词匹配,这些方法不仅效率低下,而且难以应对复杂多变的文本内容。近年来,机器学习技术的快速发展为文本分类提供了一种高效、自动化的解决方案。一、机器学习在文本分类中的应用概述
- 【软考高级系统架构论文】论企业集成平台的理解与应用
_Richard_
2025年软考系统架构师系统架构
论文真题请围绕“企业集成平台的理解与应用”论题,依次从以下三个方面进行论述。概要叙述你参与管理和开发的、采用企业集成平台进行企业信息集成的软件项目以及你在其中所承担的主要工作。请给出至少4种企业集成平台应具有的基本功能,并对这4种功能的内涵进行简要阐述。具体阐述你参与管理和开发的项目是如何使用企业集成平台进行企业信息集成的,并围绕上述4种功能,详细论述在集成过程中遇到了哪些实际问题,是如何解决的。
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- 根包含文件——Luaconf.h (src)收藏
skyremember
luainteger编译器alignment数据结构c
根包含文件——Luaconf.h(src)收藏新一篇:C1902|旧一篇:Lock-free论文集functionStorePage(){d=document;t=d.selection?(d.selection.type!='None'?d.selection.createRange().text:''):(d.getSelection?d.getSelection():'');void(key
- 2019 CCF 推荐国际学术期刊&会议(计算机体系结构/并行与分布计算/存储系统)
漓艾初
CCF
中国计算机学会推荐国际学术期刊&会议直接去这里找,全部都有https://www.ccf.org.cn/Academic_Evaluation/By_category/计算机体系结构/并行与分布计算/存储系统期刊A类序号刊物简称刊物全称出版社网址1TOCSACMTransactionsonComputerSystemsACMhttp://dblp.uni-trier.de/db/journals/
- 软件架构师论文_论基于架构(ABSD)的软件设计方法及应用
June_Xiao
软件架构师架构
2022年的论文题目是基于CBSD的软件设计方法及应用,本人写了基于ABSD的软件设计方法及应用,论文离题拿了3x分,悲催,这是我的第一次考架构师,是最后一次手写版考试,是最有可能通过的一次。下面是我的论文。论基于架构的软件设计方法及应用摘要2020年5月,我司中标了某省联网收费的省站直传项目,该项目将建设一套全省收费站与省中心相互通信传输数据的平台,主要分为上传、下发、监控三个子系统。,包括收费
- C++学习笔记(2)——高精度减法
「已注销」
C++学习笔记(每周至少3篇)C++c++
上篇文章我们了解了高精度加法,今天我们来讲减法。和加法一样,减法也是模拟小学减法竖式:先用数组存下被减数和减数:①如果a[i]b,a[i+1]还可以向a[i+2]借位。借位后a[i+1]等于9,而b[i+1]最大为9。我们来看一下高精度减法的思路:①高精度数的读取存储:使用字符串方式读取,然后转成整型数组,为方便计算,进行逆向存储。②模拟竖式进行减法:相同位置进行相减,不够减时进行借位③去除前导0
- 相机-IMU联合标定:IMU更新频率
吃水果不削皮
视觉组合导航ROSVIOkalibr
文章目录简介⚠️IMU频率参数错误设置的影响❌相机-IMU联合标定失败:Optimizationfailed!确定IMU更新频率直接通过rostopichz检查实际频率检查IMU驱动或数据手册从bag文件统计频率在这里插入图片描述修改`update_rate`的注意事项**最终建议****常见问题**简介IMU更新频率参数在Kalibr标定中直接影响标定精度和系统性能。高频率的IMU数据能提供更密
- C++高精度除以高精度
洛谷题真多
算法c++算法
高精度除以高精度的问题,在计算机科学中是一个常见的挑战,特别是在处理非常大的数字时,这些数字超出了标准数据类型(如int或longlong)的范围。这里,我们将详细解释一种常见的方法来解决这个问题:模拟手工除法。基本思路模拟手工除法的过程,即将一个高精度数(被除数)除以另一个高精度数(除数),并逐位计算商和余数。步骤详解初始化:设定被除数A和除数B(均为高精度数
- 2025-6-27-C++ 学习 模拟与高精度(7)
汤姆和佩琦
C/C++语言学习历程c++学习java
文章目录2025-6-27-C++学习模拟与高精度(7)P1786帮贡排序题目背景题目描述输入格式输出格式输入输出样例#1输入#1输出#1说明/提示题解代码流程图2025-6-27-C++学习模拟与高精度(7) 模拟题,Comeon~。P1786帮贡排序题目背景帮派名号:星月家园帮主尊号:DragonflyKang帮派ID:2685023帮派等级:4帮派人数:101/110帮派技能:(?)“星月
- DeepSeek-V3混合精度推理(FP8/BF16)原理与实战全解析
CarlowZJ
DEEPSEEK-V3
目录摘要混合精度推理的背景与意义DeepSeek-V3混合精度架构设计FP8与BF16核心原理详解混合精度推理核心实现实践案例:FP8权重转BF16与推理部署常见问题与注意事项最佳实践与扩展建议总结参考资料附录:可视化图表1.摘要本文系统梳理DeepSeek-V3在FP8/BF16混合精度推理方面的架构设计与工程实现,结合源码与实际案例,帮助开发者深入理解其混合精度推理原理、工程落地方法与性能优化
- 视线实时跟踪项目
云博士的AI课堂
基于Python计算机视觉视线跟踪python计算机视觉机器视觉opencv视线检测
GitHub项目antoinelame/GazeTracking的详细介绍,包括项目概述、功能、解决的问题、应用场景、安装与使用说明等:项目概述GazeTracking是一个基于Python的开源库,利用普通网络摄像头实现实时眼动追踪。它能够检测用户瞳孔的精确位置和视线方向,支持Python2和3。该项目通过结合OpenCV和Dlib库,提供了一种低成本、高精度的眼动追踪解决方案,适用于多种应用场
- 【社招】一年测开经验转后端开发经历。
、烟雨楼
算法phtyon面试大数据python开发语言xmlrpc
背景先说下背景吧,我是2019年毕业的本科生,985非科班,而且是和计算机专业八杆子打不着的那种非科班。大二的时候打球认识了我们学校一个计算机专业的学生,听他说互联网现在薪资好高,写代码特别有意思,于是开始跟着他学了一些写代码的知识。我之所以说是“写代码的知识”而不是计算机知识,是因为我当时是直接上手学JavaWeb那一套东西,什么数据结构、操作系统、计算机网、数据库完全没看直接就开始搞“xxx管
- 后端开发实习生简历迭代的5个版本,希望能帮你找到实习
今天不coding
简历实习后端Java大厂暑期实习
后端开发实习生简历迭代的5个版本,希望能帮你找到实习1.0研究生开学时写的第一份简历,主要是对本科做的项目的一些总结。本科主要是以深度学习的项目为主+比赛,开发的技术学的比较少,后端的项目也没有做过。但是凭此找到了一份算法的实习。当时研一还是想走算法工程师的。后面觉得自己不适合,就放弃了。2.0经历过几个月的算法实习和论文折磨之后,决定走后端开发岗了,选择Java为主语言,在B站大学做了一个项目,
- 计算机毕业设计Springboot农副产品线上商场系统 基于Spring Boot的农产品电商交易平台设计与实现 Spring Boot架构下的农产品线上商城系统开发
路可程序设计
课程设计springboot后端
计算机毕业设计Springboot农副产品线上商场系统r7duh7er(配套有源码程序mysql数据库论文)本套源码可以先看具体功能演示视频领取,文末有联xi可分享随着互联网技术的飞速发展,电子商务已经成为人们生活中不可或缺的一部分。尤其是在农产品销售领域,传统的线下销售模式面临着诸多限制,如销售渠道狭窄、信息不对称、销售成本高等问题。为了打破这些限制,提升农产品的销售效率和市场覆盖范围,开发一个
- 基础RAG实现,最佳入门选择(七)
人工智能
增强型RAG系统的查询转换采用三种查询转换技术,以提高RAG系统中的检索性能,而无需依赖于像LangChain这样的专门库。通过修改用户查询,我们可以显著提高检索信息的相关性和全面性。关键转换技术1.查询重写:使查询更加具体和详细,以提高搜索精度。2.退步提示:生成更广泛的查询以检索有用的上下文信息。3.子查询分解:将复杂的查询分解成更简单的组件进行全面检索。具体代码实现查询变换相关函数查询重写d
- Gen AI:重塑未来的创造力工具箱
一杯酒zpy
人工智能
目录页一、GenAI工具箱助力大学生涯1.通用GenAI工具2.GenAI科研辅助1.文献阅读与论文写作2.数据分析与可视化3.AI翻译工具二、GenAI办公、学习助手1.PPT制作2.表格制作3.AI思维导图4.AI办公5.AI图像处理6.AI视频处理7.AI音频处理8.AI编程工具9.AI搜索引擎说明:网盘资源密码获取:关注微信公众号【土木岛】,后台回复文件框中提示的对应关键词自动发送。点击查
- 大模型量化
需要重新演唱
大模型量化
大模型量化是一种优化技术,旨在减少深度学习模型的内存占用和提高推理速度,同时尽量保持模型的精度。量化通过将模型中的浮点数权重和激活值转换为较低精度的表示形式来实现这一目标。以下是关于大模型量化的详细知识:目录1.量化基础1.1量化定义1.2量化优势1.3量化挑战2.量化方法2.1量化类型2.2量化粒度2.3量化算法3.量化实践3.1量化流程3.2量化工具4.量化案例4.1BERT量化4.2GPT-
- 【大模型学习 | 量化】pytorch量化基础知识(1)
九年义务漏网鲨鱼
算法学习pytorch人工智能
pytorch量化[!note]官方定义:performingcomputationsandstoringtensorsatlowerbitwidthsthanfloatingpointprecision.支持INT8量化,可以降低4倍的模型大小以及显存需求,加速2-4倍的推理速度通俗理解:降低权重和激活值的精度(FP32→INT8),从而提高模型大小以及显存需求。一、前置知识1.1算子融合将多个
- 刚入门3DGS的新手小白能够做的工作
一碗姜汤
计算机视觉3d计算机视觉
作为刚入门3DGaussianSplatting(3DGS)的新手,你可以从以下几个方向入手,逐步掌握核心概念并参与实践:1.基础学习与工具熟悉(1)理解核心概念必读资料原论文:3DGaussianSplattingforReal-TimeRadianceFieldRendering(Kerbletal.,SIGGRAPH2023)。通俗解读:博客或视频教程(如YouTube解析)。关键点:高斯球
- 三维建模3D扫描汽车车灯抄数设计逆向工程-中科米堆
中科米堆
3d汽车
车灯作为兼具功能性与设计美学的核心部件,其研发流程对精度与效率的要求极高。传统车灯设计依赖手工测绘与模具开发,周期长、成本高,且难以捕捉复杂曲面细节。随着3D扫描与逆向工程技术的突破,中科米堆三维建模3D扫描解决方案正以数字化手段革新这一领域,实现从物理车灯到数字模型的精准转化,为汽车设计注入全新动能。中科米堆三维扫描系统采用蓝光激光扫描技术,可实现0.025mm测量精度,完美适配车灯曲面复杂、反
- 中科米堆3D扫描逆向建模方案:汽车轮毂三维扫描抄数建模
某汽车制造商为了提升产品性能和满足客户需求,决定对轮毂盖进行设计和改装。传统的设计方法依赖于手工测量和绘制,效率低下且精度较差。为了解决这个问题,该制造商决定采用三维扫描技术来快速准确地获取轮毂盖的三维数据。三维扫描技术通过非接触式扫描快速获取物体表面三维数据,为产品逆向设计、模具修复、质量检测等环节提供高效解决方案。中科米堆手持式蓝光三维扫描仪采用蓝光激光扫描技术,通过激光发射器投射高精度蓝色激
- 学生成绩信息管理系统的设计与实现(论文+源码)_kaic
开心工作室
计算机文章毕业设计java开发语言springbootperl后端batchswift
摘要近年来,随着国内的高考改革和教育信息化的发展,为了提高学生成绩管理效率和准确性,本文设计并实现了一种学生成绩管理系统,在研究中发现对于学校在管理学生成绩信息的效率上显著提升。现代教育管理中,学生成绩管理系统是必不可少的工具之一。首先,通过对相关文献的综合评估和需求分析,得出了一些适合用户的功能模块,这些模块被认为是最为合适的。采用面向对象的设计方法,选择了具备面向对象特性的Java语言,并使用
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号