- Faster R-CNN原理详解以及Pytorch实现模型训练与推理
阿_旭
深度学习实战cnnpytorch人工智能FasterRCNN
《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【YOLOv8多目标识别与自动标注软件开发】8.【基于深度学习的行人跌倒检测系统】9.【基于深度学习的PCB板缺陷检测系统
- cornell grasp data 康奈尔大学抓取数据集 百度云
工科pai
深度学习自主抓取康奈尔抓取数据集自主抓取
国内下载较慢,康奈尔大学抓取数据集分享,给有用的人。科研之路道阻且长,互行方便。康奈尔大学抓取数据集是基于深度学习方法实现机器人自主抓取的必备数据集,直接推动了机器人自主抓取的发展。目前先进的基于视觉和机器人抓取方法都是在该数据集上训练过。该数据集共十组,每组100个物体,共计1000个物体,不仅包含物体的图像,还包含物体的抓取位姿。下载链接:链接:https://pan.baidu.com/s/
- RK3568笔记五十六:yolov8_obb旋转框训练部署
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。本文基于rknn_model_zoo和山水无移大佬的博客和代码训练模型并部署到正点原子的ATK-DLRK3568板子测试。https://github.com/ultralytics/ultralytics一、训练1、环境搭建使用的是AUTODL环境,yolov8-obb数据集不大,也可以使用cpu。2、创建虚拟环境#创建虚拟环境condacreate-nyo
- RK3568笔记六十八:Yolov11目标检测部署测试
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。看到yolov11出了,山水无移大佬测试通过,跟个风测试一下效果。使用的是正点原子的ATK-DLRK3568开发板。这里不训练自己的模型了,使用官方模型测试。一、环境搭建1、下载源码ultralytics/ultralytics:UltralyticsYOLO112、创建虚拟环境condacreate-nyolov11_envpython=3.83、激活con
- 对开源VLA sota π0的微调——如何基于各种开源数据集、以及你自己的私有数据集微调π0(含我司的微调实践)
v_JULY_v
通用机械臂之路:π0等VLAsota模型开源VLA的sota模型微调π0微调VLA模型基于私有数据集微调π0基于开源数据集微调π0
前言25年2.4日,几个月前推出π0的公司PhysicalIntelligence(π)宣布正式开源π0及π0-FAST,如之前所介绍的,他们对用超过10,000小时的机器人数据进行了预训练该GitHub代码仓库「π0及π0-FAST的GitHub地址:github.com/Physical-Intelligence/openpi」包括4个方面:简言之,就是π0本身的代码和权重、特定平台上特定任务
- 《自然语言处理实战入门》深度学习 ---- 预训练模型初探
shiter
AI重制版】预训练NLP自然语言处理
文章大纲前言预训练模型简介语言表示学习神经上下文编码器为何需要预训练模型发展历史主流预训练模型预训练模型与分类将PTMs应用至下游任务微调策略未来研究方向参考文献前言随着深度学习的发展,各种神经网络被广泛用于解决自然语言处理(NLP)任务,如卷积神经网络(convolutionalneuralnetworks,CNNs)、递归神经网络(neuralnetworks,RNNs)、基于图的神经网络(g
- DeepSeek发展背景和前景
爱吃苹果的日记本
人工智能
1.成立背景:它的背景是由杭州深度求索人工智能基础技术研究有限公司开发,该公司成立于2023年7月17日,由量化资管巨头幻方量化创立。幻方量化在AI量化对冲基金领域具有深厚的技术积累和资金支持,这为DeepSeek的研发奠定了坚实的基础。2.技术演进:2024年1月:发布首个大模型DeepSeekLLM,包含670亿参数,在2万亿token的数据集上训练,性能超越Llama270BBase。202
- 第20周:Pytorch文本分类入门
weixin_46620278
pytorch分类人工智能
目录前言一、前期准备1.1环境安装导入包1.2加载数据1.3构建词典1.4生成数据批次和迭代器二、准备模型2.1定义模型2.2定义示例2.3定义训练函数与评估函数三、训练模型3.1拆分数据集并运行模型3.2使用测试数据集评估模型总结前言本文为[365天深度学习训练营]中的学习记录博客原作者:[K同学啊]说在前面本周任务:了解文本分类的基本流程、学习常用数据清洗方法、学习如何使用jieba实现英文分
- NLP新手入门-第N1周:Pytorch文本分类入门
Oaix Nay
365天深度学习训练记录pytorch自然语言处理分类
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊|接辅导、项目定制目录一、课题背景和开发环境二、环境安装三、文本分类1.加载数据2.构建词典3.生成数据批次和迭代器4.定义模型5.定义实例6.定义训练函数与评估函数7.拆分数据集并运行模型8.使用测试数据集评估模型一、课题背景和开发环境第N1周:Pytorch文本分类入门Python3.8.12pytorch==1.8.1+cu111t
- 28.代码随想录算法训练营第二十八天|122. 买卖股票的最佳时机 II,55. 跳跃游戏,45. 跳跃游戏 II,1005. K 次取反后最大化的数组和
白鹭鸣鸣!
算法java
28.代码随想录算法训练营第二十八天|122.买卖股票的最佳时机II,55.跳跃游戏,45.跳跃游戏II,1005.K次取反后最大化的数组和122.买卖股票的最佳时机II-力扣(LeetCode)给你一个整数数组prices,其中prices[i]表示某支股票第i天的价格。在每一天,你可以决定是否购买和/或出售股票。你在任何时候最多只能持有一股股票。你也可以先购买,然后在同一天出售。返回你能获得的
- Python 在深度学习中的应用
2501_90435375
人工智能python深度学习开发语言
深度学习是机器学习的一个分支,它通过构建和训练深层神经网络来实现对数据的学习和理解。Python作为一种简洁、易读、功能强大的编程语言,在深度学习领域得到了广泛的应用。本文将详细介绍Python在深度学习中的应用,包括深度学习的基础概念、Python深度学习库和框架、实际案例。二、深度学习的基础概念1.神经网络神经网络是深度学习的基础,它由多个神经元组成,每个神经元接收输入信号,进行加权求和,并通
- Bert的使用
巨鹿..
深度学习记录bert人工智能深度学习
一、Data.py#data负责产生两个dataloaderfromtorch.utils.dataimportDataLoader,Datasetfromsklearn.model_selectionimporttrain_test_split#给X,Y和分割比例,分割出来一个训练集和验证机的X,Yimporttorchdefread_file(path):data=[]label=[]with
- PyTorch 中的混合精度训练方法,从 autocast 到 GradScalar
Syntax_CD
PyTorch必知必会pytorch人工智能python
PyTorch的混合精度训练主要由两个方法实现:amp.autocast和amp.GradScalar。在这两个工具的帮助下,可以实现以torch.float16的混合精度训练。当然,这两个方法都是模块化并且通常都会一起调用,但并不一定总是需要一起使用。参考:AutomaticMixedPrecisionpackage-torch.ampAutomaticMixedPrecisionexample
- 【牛客 差分】值周
Liu_Meihao
c++
题目值周思路和校门外的树一样,唯一不同的是本题数组要开的大一些,其他都一样。代码#includeusingnamespacestd;constintN=100000010;inta[N]={0},b[N];intmain(){std::ios::sync_with_stdio(false);intn,m;cin>>n>>m;for(inti=1;i>l>>r;b[l]=b[l]+1;b[r+1]=
- 考研复习时间规划:从迷茫到高效备考的进阶之路
闲虎考研
考研经验考研
考研复习是一场持久战,科学的复习规划是成功的关键。对于大多数考生而言,复习时间通常在6-12个月之间,如何在这段时间内实现高效备考,需要建立在对自身情况和考研规律的深刻认知之上。一、考研复习的时间特征考研复习具有明显的阶段性特征。基础阶段需要全面梳理知识体系,强化阶段着重攻克重点难点,冲刺阶段则要进行查漏补缺和模拟训练。每个阶段都有其特定的任务和目标,考生需要根据这些特征合理安排时间。考研复习的时
- 模型优化前沿趋势与行业应用实战
智能计算研究中心
其他
内容概要模型优化技术正经历从理论研究到产业落地的关键跃迁。随着自动化机器学习(AutoML)与边缘计算技术的深度融合,模型开发范式正从人工调参转向自动化、自适应优化。以联邦学习为代表的数据隐私保护技术,正在重构跨机构协作的模型训练范式,而量子计算与神经架构搜索(NAS)的结合,为超参数优化开辟了新维度。在应用层面,医疗影像识别准确率突破99%的突破性成果,验证了迁移学习在跨领域知识迁移中的巨大潜力
- 算力安全创新驱动未来趋势endofsentence
智能计算研究中心
其他
内容概要算力安全与技术创新正在重塑全球算力生态,其核心驱动力来自异构计算、边缘计算及量子计算等前沿技术的深度融合。当前算力架构正经历从集中式向分布式演进,通过异构加速芯片、动态资源调度算法及绿色能效优化,显著提升算力基础设施的可扩展性与可靠性。例如,异构计算通过CPU、GPU、FPGA的协同加速,使复杂模型训练效率提升40%以上。关键数据:根据IDC预测,到2025年全球智能算力需求将增长30倍,
- H800实战应用深度解析endofsentence
智能计算研究中心
其他
内容概要H800作为新一代计算架构的核心组件,其设计理念聚焦于高性能计算与人工智能场景的深度融合。通过模块化异构计算架构,H800实现了计算密度与能效比的突破性提升。下表展示了H800在不同场景下的性能表现对比:场景类型训练速度提升推理延迟降低能效比提升自然语言处理35%22%40%计算机视觉28%18%33%推荐系统41%29%37%资深系统架构师指出:"H800的异构计算架构在模型并行处理方面
- DeepSeek高效AI创作成本革新endofsentence
智能计算研究中心
其他
内容概要DeepSeek作为新一代智能创作平台,其核心技术突破体现在混合专家架构(MoE)与670亿参数的深度融合。该系统通过多任务联合训练框架,在自然语言理解、代码生成和跨模态处理方面展现出显著优势。其混合专家架构采用动态路由机制,实现参数利用率提升40%以上,在保持模型容量的同时将推理成本降低68%。在代码生成任务中,DeepSeekCoder在HumanEval基准测试中达到83.1%的准确
- DeepSeek大语言模型下几个常用术语
曲幽
AI计算机语言模型人工智能自然语言处理deepseekollamaai
昨天刷B站看到复旦赵斌老师说的一句话“科幻电影里在人脑中植入芯片或许在当下无法实现,但当下可以借助AI人工智能实现人类第二脑”(大概是这个意思)更多内容,可关注公众号“一名程序媛”,我们一起从0-1学编程基本概念AI人工智能NLP自然语言处理LLM大语言模型HuggingFace一个提供了丰富的预训练模型和工具库的平台网站Ollama开源的本地大语言模型运行框架,用来在本地部署调用大语言模型,如D
- Python机器学习实战:使用Flask构建机器学习API
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
Python机器学习实战:使用Flask构建机器学习API作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在数据科学和机器学习领域,模型训练和部署一直是重要的挑战。传统的机器学习项目往往采用独立的脚本或复杂的流程,难以实现模型的自动化、可视化和复现。为了解决这一问题,将机器学习模型封装成可访问的API变得越来越流行。Fla
- 入坑 Python 全能实战小白训练营,470 集干货 12.9G 大揭秘!
七七知享
Pythonpython开发语言pandasnumpymatplotlibjavaphp
家人们,我最近挖到了一个Python学习的宝藏——Python全能实战小白训练营。整整470集,内容超丰富,资源包有12.9G,完全就是为咱们这些想系统学习Python的小白量身定制的。接下来就给大家好好唠唠。随着课程深入,会涉及到Python的各种高级特性,比如面向对象编程、模块与包的使用。在讲面向对象编程时,老师通过打造一个小型游戏角色系统,把类、对象、继承、多态这些抽象概念诠释得生动形象,让
- 深度学习训练中GPU内存管理
@Mr_LiuYang
遇到过的问题内存管理内存溢出outofmemoryGPU内存
文章目录概述常见问题1、设备选择和数据迁移2、显存监控函数3、显存释放函数4、自适应batchsize调节5、梯度累积概述在深度学习模型训练中,主流GPU显存通常为8GB~80GB,内存不足会导致训练中断或BatchSize受限,GPU内存管理是优化性能和避免OutOfMemoryError的关键挑战。本博客简介PyTorch中GPU内存管理的核心函数、用法和实战技巧,帮助开发者高效利用显存资源。
- 一学就会的深度学习基础指令及操作步骤(5)使用预训练模型
小圆圆666
深度学习人工智能python卷积神经网络
文章目录使用预训练模型加载预训练模型图像加载与预处理预测使用预训练模型查看模型库和常用模型加载预训练模型fromtorchvision.modelsimportvgg16#VGG16模型架构的定义fromtorchvision.modelsimportVGG16_Weights#VGG16的预训练权重配置#loadtheVGG16network*pre-trained*ontheImageNetd
- 卡尔曼滤波算法c语言stm32,卡尔曼滤波算法及C语言实现_源代码
weixin_39643255
卡尔曼滤波算法c语言stm32
a往南向北2019-01-1620:39:2011340收藏111分类专栏:C语言嵌入式文章标签:卡尔曼滤波C代码卡尔曼滤波理论很容易就可以在MATLAB软件环境下实现,但是,实际的硬件板子上还是需要C语言,当然可以自动代码生成,还有一种就是直接手动编写C语言。1.前言在google上搜索卡尔曼滤波,很容易找到以下这个帖子:http://blog.csdn.net/lanbing510/artic
- 【LLM】预训练的具体流程
FOUR_A
LLMpython人工智能深度学习大模型
分词器训练预训练模型:就像你已经学会了一些基础知识的“大脑”,我们可以在这个基础上继续学习新东西。比如,有些模型已经学会了英语,但中文学得不够好。中文预训练:为了让这个“大脑”更好地理解中文,我们需要用大量的中文数据继续训练它。分词器(Tokenizer):它的作用是把一句话拆分成一个个小单元(比如词语或字)。比如,“我喜欢学习”会被拆成“我/喜欢/学习”。这些拆分后的单元会被转换成数字,方便模型
- 飞控简析-从入门到跑路序章
skyman满天星
飞控简析pixhawk无人机开源飞控
一、序言茫茫天数此中求,世道兴衰不自由万万千千说不尽,不如推背去归休本人搞飞控差不多两年了,从一开始什么都不懂的真·小白,到现在的高级小白,我已经经历了太多太多。因为感觉飞控是一个比较小众的产品,所以国内的资料并不是很完善,有些文章重复太多了,而且每个人看问题的视角是不一样的。我虽然只是个半瓶水,但是也想为国内的飞控圈子做一点贡献。二、学飞控有没有前途这个话题有点小,大一点的问法应该是学嵌入式有没
- python递推式_Python 递推式构造列表(List Comprehensions)
man One
python递推式
你需要构造一个新的列表,列表中的元素是从一个已知列表中的元素计算而得到的.比如你要创建一个列表,里面的元素是另一个列表中的元素加23后得到的.使用递推式构造列表是最理想的方法:thenewlist=[x+23forxintheoldlist]如果你希望用一个列表中大于5的元素构造一个新的列表,使用递推式也是很方便的:thenewlist=[xforxintheoldlistifx>5]如果你希望将
- YOLO训练指南(以V3为例)
niuTaylor
YOLO目标检测深度学习机器学习
YOLO训练指南(以V3为例)前言了解yolo3https://cloud.tencent.com/developer/news/76803https://www.bilibili.com/video/av77670746/1.总教程★★★https://blog.csdn.net/USTCsunyue/article/details/93648307★★★★https://blog.csdn.n
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情