在现实生活中,我们把两个节点的连线称为边
,由边
与节点
组成的图形叫做图
,如下图。
其实上面这张图也叫做2阶超图
,因为每一条边上只有2个
节点。
更一般的,当一条边上的节点数变为任意个
时,我们把这条边叫做超边
例如下图中,四个颜色分别代表了四条超边
:
由这四条超边
组成的图,叫做超图
定义:
In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. Formally, a hypergraph H H H is a pair H = ( X , E ) H=(X,E) H=(X,E) where X X X is a set of elements called nodes or vertices, and E E E is a set of non-empty subsets of X X X called hyperedges or edges.
在上图中, X = { v 1 , v 2 , v 3 , v 4 , v 5 , v 5 , v 6 , v 7 } X = \{v1, v2, v3, v4, v5, v5,v6, v7\} X={v1,v2,v3,v4,v5,v5,v6,v7}, E = { e 1 , e 2 , e 3 , e 4 } = { { v 1 , v 2 , v 3 } , { v 2 , v 3 } , { v 3 , v 4 , v 5 } , { v 4 } } E = \{e1, e2, e3, e4\} = \{\{v1, v2, v3\}, \{v2, v3\}, \{v3, v4, v5\}, \{v4\}\} E={e1,e2,e3,e4}={{v1,v2,v3},{v2,v3},{v3,v4,v5},{v4}}
每个边所包含的顶点个数都是相同且为k个的,就可以被称为k阶超图。三阶超图如下所示:
参考:https://blog.csdn.net/TerreHX/article/details/79433848