在卷积神经网络训练过程中loss出现NaN的原因以及可以采取的方法

1.梯度爆炸


原因:在学习过程中,梯度变得非常大,使得学习的过程偏离了正常的轨迹。

症状:观察输出日志(runtime log)中每次迭代的loss值,你会发现loss随着迭代有明显的增长,最后因为loss值太大以致于不能用浮点数去表示,所以变成了NaN

可采取的方法:1.降低学习率,比如solver.prototxtbase_lr,降低一个数量级(至少)。如果在你的模型中有多个loss层,就不能降低基础的学习率base_lr,而是需要检查日志,找到产生梯度爆炸的层,然后降低train_val.prototxt中该层的loss_weight

2.错误的学习率策略及参数


原因:在学习过程中,caffe不能得出一个正确的学习率,相反会得到inf或者nan的值。这些错误的学习率乘上所有的梯度使得所有参数变成无效的值。

症状:观察输出日志(runtime log),你应该可以看到学习率变成NaN,例如:

... sgd_solver.cpp:106] Iteration 0, lr = -nan

可采取的方法:修改solver.prototxt文件中所有能影响学习率的参数。比如,如果你设置的学习率策略是 lr_policy: “poly” ,而你又忘了设置最大迭代次数max_iter,那么最后你会得到lr=NaN

关于caffe学习率及其策略的内容,可以在github的/caffe-master/src/caffe/proto/caffe.proto 文件中看到 (传送门)。
下面是源文件的注释部分的描述:

// The learning rate decay policy. The currently implemented learning rate
// policies are as follows:
//    - fixed: always return base_lr.
//    - step: return base_lr * gamma ^ (floor(iter / step))
//    - exp: return base_lr * gamma ^ iter
//    - inv: return base_lr * (1 + gamma * iter) ^ (- power)
//    - multistep: similar to step but it allows non uniform steps defined by
//      stepvalue
//    - poly: the effective learning rate follows a polynomial decay, to be
//      zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)
//    - sigmoid: the effective learning rate follows a sigmod decay
//      return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
//
// where base_lr, max_iter, gamma, step, stepvalue and power are defined
// in the solver parameter protocol buffer, and iter is the current iteration.

3.错误的损失函数


原因:有时,在损失层计算损失值时会出现NaN的情况。比如,向InfogainLoss层没有归一化输入值,使用自定义的损失层等。

症状:观察输出日志(runtime log)的时候,你可能不会发现任何异常:loss逐渐下降,然后突然出现NaN

可采取的方法:尝试重现该错误,打印损失层的值并调试。

举个栗子:有一回,我根据批量数据中标签出现的频率去归一化惩罚值并以此计算loss。如果有个label并没有在批量数据中出现,频率为0,结果loss出现了NaN的情况。在这种情况下,需要用足够大的batch来避免这个错误。

4.错误的输入


原因:你的输入中存在NaN

症状:一旦学习过程中碰到这种错误的输入,输出就会变成NaN。观察输出日志(runtime log)的时候,你可能也不会发现任何异常:loss逐渐下降,然后突然出现NaN

可采取的方法:重建你的输入数据集(lmdb/leveldn/hdf5…),确保你的训练集/验证集中没有脏数据(错误的图片文件)。调试时,使用一个简单的网络去读取输入,如果有一个输入有错误,这个网络的loss也会出现NaN

5.Pooling层的步长大于核的尺寸


由于一些原因,步长stride>核尺寸kernel_size的pooling层会出现NaN。比如:

layer {
  name: "faulty_pooling"
  type: "Pooling"
  bottom: "x"
  top: "y"
  pooling_param {
    pool: AVE
    stride: 5
    kernel: 3
  }
}

结果y会出现NaN

原文链接:https://stackoverflow.com/questions/33962226/common-causes-of-NaNs-during-training

你可能感兴趣的:(深度学习)