- 免费的GPT可在线直接使用(一键收藏)
kkai人工智能
gpt
1、LuminAI(https://kk.zlrxjh.top)LuminAI标志着一款融合了星辰大数据模型与文脉深度模型的先进知识增强型语言处理系统,旨在自然语言处理(NLP)的技术开发领域发光发热。此系统展现了卓越的语义把握与内容生成能力,轻松驾驭多样化的自然语言处理任务。VisionAI在NLP界的应用领域广泛,能够胜任从机器翻译、文本概要撰写、情绪分析到问答等众多任务。通过对大量文本数据的
- 轻量级模型解读——轻量transformer系列
lishanlu136
#图像分类轻量级模型transformer图像分类
先占坑,持续更新。。。文章目录1、DeiT2、ConViT3、Mobile-Former4、MobileViTTransformer是2017谷歌提出的一篇论文,最早应用于NLP领域的机器翻译工作,Transformer解读,但随着2020年DETR和ViT的出现(DETR解读,ViT解读),其在视觉领域的应用也如雨后春笋般渐渐出现,其特有的全局注意力机制给图像识别领域带来了重要参考。但是tran
- transformer架构(Transformer Architecture)原理与代码实战案例讲解
AI架构设计之禅
大数据AI人工智能Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
transformer架构(TransformerArchitecture)原理与代码实战案例讲解关键词:Transformer,自注意力机制,编码器-解码器,预训练,微调,NLP,机器翻译作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来自然语言处理(NLP)领域的发展经历了从规则驱动到统计驱动再到深度学习驱动的三个阶段。
- 英伟达(NVIDIA)B200架构解读
weixin_41205263
芯际争霸GPGPU架构gpu算力人工智能硬件架构
H100芯片是一款高性能AI芯片,其中的TransformerEngine是专门用于加速Transformer模型计算的核心部件。Transformer模型是一种自然语言处理(NLP)模型,广泛应用于机器翻译、文本生成等任务。TransformerEngine的电路设计原理主要包括以下几个方面:
- 【拥抱AI】浅谈Prompt的书写规范及要点
奔跑草-
人工智能人工智能promptRAGAI编程大模型LLMAIAgent
Prompt是什么?Prompt是一种技术,它通过自然语言处理来引导用户与机器之间的交互。在人工智能领域,Prompt通常用于生成文本,例如对话系统、机器翻译和文本摘要等应用。它也用于训练模型,以使其能够理解和生成人类语言。Prompt的工作原理是通过建立相应的语料库和语义解析模型,将自然语言转换为机器可识别的指令。在大模型时代,Prompt的使用尤为重要,因为它可以帮助模型更好地理解用户的意图并
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- 德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
Encarta1993
自然语言处理自然语言处理人工智能
自然语言处理扩展研究1.多语言研究2.语言锚定3.伦理问题1.多语言研究多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究领域。多语言性的研究促进了机器翻译、跨语言信息检索和多语言对话系统等应用的发展。以下是多语言的几个主要研究方向和重要技术:多语言模型的构建,开发
- NLP从零开始------17.文本中阶处理之序列到序列模型(2)
人生百态,人生如梦
nlp从零开始自然语言处理人工智能
3.学习序列到序列模型可以看成一种条件语言模型,以源句x为条件计算目标句的条件概率该条件概率通过概率乘法公式分解为从左到右每个词的条件概率之积:序列到序列模型的监督学习需要使用平行语料,其中每个数据点都包含一对源句和目标句。以中译英机器翻译为例,平行语料的每个数据点就是一句中文句子和对应的一句英文句子。机器翻译领域较为有名的平行语料库来自机器翻译研讨会(workshoponmachinetrans
- AI 大模型在文本生成任务中的创新应用
AI_Guru人工智呢
人工智能
概述随着人工智能技术的飞速发展,大模型在文本生成任务中的应用越来越广泛。这些模型通过深度学习技术,能够生成连贯、有意义的文本,甚至在某些情况下达到与人类写作难以区分的程度。本文将探讨AI大模型在文本生成任务中的创新应用,包括自动文摘、机器翻译、创意写作等领域。自动文摘自动文摘是指从给定文本中自动提取关键信息,生成简短摘要的过程。这对于处理大量文本数据、快速获取信息尤为重要。代码示例:基于BERT的
- Hugging Face教程
小牛笔记
自然语言处理人工智能自然语言处理
HuggingFace教程1.引言在当今数字化时代,自然语言处理(NLP)在各个领域中扮演着重要角色。从文本分类、情感分析到机器翻译和对话系统,NLP技术的应用日益广泛。在NLP领域,HuggingFace是一个备受欢迎的开源工具库,提供了丰富的预训练模型和强大的工具,帮助开发者快速构建和部署NLP应用。2.HuggingFace简介HuggingFace是一个专注于NLP的开源组织,致力于提供易
- RNN及其变体
豫儿啊~
lstm人工智能rnn
RNN及其变体RNN模型定义循环神经网络:一般接受的一序列进行输入,输出也是一个序列作用和应用场景:RNN擅长处理连续语言文本,机器翻译,文本生成,文本分类,摘要生成RNN模型的分类根据输入与输出结构NVsN:输入和输出等长,应用场景:对联生成;词性标注;NERNVs1:输入N,输出为单值,应用场景:文本分类1VsN:输出是一个,输出为N,应用场景:图片文本生成NVsM:输入和输出不等长,应用场景
- 文字模型训练分析评论(算法实战)
富士达幸运星
算法人工智能机器学习
文字模型训练,尤其是在自然语言处理(NLP)领域,是构建能够理解、解释、生成人类语言系统的核心步骤。这类模型广泛应用于文本分类、情感分析、机器翻译、聊天机器人、摘要生成等多个方面。针对文字模型训练后的分析评论,可以从以下几个方面进行:1.性能评估准确率/错误率:评估模型在测试集上的准确率或错误率是最直接的方式,这能反映模型的基本性能。混淆矩阵:对于分类任务,混淆矩阵可以详细展示模型在各个类别上的表
- 什么是LLM,主要用途有哪些,在应用中有哪些优势和局限性?
好好学习的不知名程序员
机器学习深度学习AIGC人工智能
LLM(大型语言模型)在实际应用中的优势包括多领域应用、技术突破、创新应用等。其局限性则包括设计挑战、行为问题、科学难题等。LLM在实际中的应用优势:1.多领域应用:自然语言处理:LLM在机器翻译、语音识别、文本生成等领域表现出色。智能对话系统:LLM能够提供与人类相似的聊天机器人体验。内容创作:从文章写作到代码开发,LLM都能提供高效的辅助。2.技术突破:深度学习架构:LLM基于先进的深度学习技
- 【机器学习】机器学习与大模型在人工智能领域的融合应用与性能优化新探索
E绵绵
Everything人工智能机器学习大模型pythonAIGC应用科技
文章目录引言机器学习与大模型的基本概念机器学习概述监督学习无监督学习强化学习大模型概述GPT-3BERTResNetTransformer机器学习与大模型的融合应用自然语言处理文本生成文本分类机器翻译图像识别自动驾驶医学影像分析语音识别智能助手语音转文字大模型性能优化的新探索模型压缩权重剪枝量化知识蒸馏分布式训练数据并行模型并行异步训练高效推理模型裁剪缓存机制专用硬件未来展望跨领域应用智能化系统人
- 《跨越文化与语言的鸿沟:人工智能的挑战与机遇》
程序猿阿伟
人工智能
在全球化的时代,不同文化和语言之间的交流日益频繁。然而,文化和语言的多样性也带来了理解和交流上的巨大挑战。人工智能作为一项具有变革性的技术,在应对这些差异方面发挥着越来越重要的作用,但同时也面临着诸多困难。语言是文化的载体,每种语言都蕴含着独特的文化内涵、价值观和思维方式。不同语言的语法结构、词汇用法和表达方式千差万别,这使得机器翻译等自然语言处理任务变得异常复杂。例如,某些语言中的词汇可能在其他
- 深度学习--复制机制
Ambition_LAO
深度学习
复制机制(CopyMechanism)是自然语言处理(NLP)中特别是在文本生成任务中(如机器翻译、摘要生成等)使用的一种技术。它允许模型在生成输出时不仅仅依赖于其词汇表中的单词,还可以从输入文本中“复制”单词到输出文本中。这种机制非常有用,尤其是在处理未见过的词汇或专有名词时。1.概念复制机制的基本思想是,在生成每个输出单词时,模型不仅从其词汇表中选择一个词,还可能直接从输入序列中复制一个词。这
- 【ShuQiHere】“从 One-Hot 到 GPT:窥探词表示技术的演变”
ShuQiHere
gpt神经网络机器学习人工智能
【ShuQiHere】在自然语言处理(NLP)领域,如何让机器理解人类语言一直是一个核心问题。而词表示(WordRepresentation)正是解决这个问题的基础技术。通过词表示,我们可以将文本中的词语转化为计算机能够理解和处理的数字向量,这为各种NLP任务,如文本分类、情感分析、机器翻译等,提供了强大的支持。从最早的One-Hot编码,到如今广泛应用的上下文相关词嵌入技术,词表示技术已经走过了
- 探索Ruby的自然语言处理宝库:文本魔法的艺术
2401_85743969
ruby自然语言处理开发语言
标题:探索Ruby的自然语言处理宝库:文本魔法的艺术在人工智能的浪潮中,自然语言处理(NLP)成为了连接人类语言与机器理解的桥梁。Ruby,作为一种优雅而富有表现力的编程语言,拥有一系列强大的NLP库,它们使得文本分析、情感分析、机器翻译等任务变得简单而高效。本文将深入探索Ruby世界中的一些顶尖NLP库,并展示如何使用这些工具来执行实际的NLP任务。RubyNLP库的魔力Ruby的自然语言处理库
- 人工智能中的语言模型演变
机器之心AI
人工智能语言模型自然语言处理
令人惊讶的是,语言模型在这些年间已经显著改变了人工智能领域的整体面貌。设计这些模型的目的是为了理解、人类语言的生成和处理,从自然语言处理到机器翻译甚至创意写作,这些模型日趋复杂且多功能,应用范围从自然语言处理到机器翻译,甚至创意写作。本文详细阐述了语言模型在人工智能领域从早期到先进能力的发展过程。早期的语言模型基于统计方法。这些模型通常被称为n-gram模型,通过计算词序列的频率来预测句子中的下一
- 什么是ChatGPT
丨逐风者丨
什么是ChatGPT?ChatGPT是OpenAI公司训练的一个大型语言模型。它是基于Transformer架构的,拥有超过350GB的参数,可以进行各种自然语言处理任务,如语音识别、机器翻译、对话生成和问答等。ChatGPT模型是在大量的网络文本数据上进行训练的,因此它可以生成高质量的文本内容。它可以根据输入文本生成一段相关的文本,或者回答问题并生成针对性的回答。它还可以根据输入的提示生成一段文
- NLP技术
小天才dhsb
网络其他
自然语言处理(NLP)技术可以应用在多个领域,例如机器翻译、情感分析、文本分类等。以下是几个例子:1.机器翻译:NLP技术可以将一种语言的文本自动翻译成另一种语言。例如,谷歌翻译就是应用了NLP技术,它可以将英语的文本翻译成其他语言,如法语、西班牙语等。2.情感分析:NLP技术可以分析文本中的情感倾向。例如,通过分析社交媒体上用户的评论和推文,可以判断用户对某个产品或事件的情感态度是正面的、负面的
- 小白看得懂的 Transformer
zy_zeros
python开发语言
1.导语谷歌推出的BERT模型在11项NLP任务中夺得SOTA结果,引爆了整个NLP界。而BERT取得成功的一个关键因素是Transformer的强大作用。谷歌的Transformer模型最早是用于机器翻译任务,当时达到了SOTA效果。Transformer改进了RNN最被人诟病的训练慢的缺点,利用self-attention机制实现快速并行。并且Transformer可以增加到非常深的深度,充分
- 深度学习笔记1:神经网络端到端学习笔记
撒哈拉土狼
深度学习
许多重要问题都可以抽象为变长序列学习问题(sequencetosequencelearning),如语音识别、机器翻译、字符识别。这类问题的特点是,1)输入和输出都是序列(如连续值语音信号/特征、离散值的字符),2)序列长度都不固定,3)并且输入输出序列长度没有对应关系。因此,传统的神经网络模型(DNN,CNN,RNN)不能直接以端到端的方式解决这类问题的建模和学习问题。解决变长序列的端到端学习,
- 深度学习的进展
CuiXg
深度学习人工智能
深度学习的进展深度学习作为人工智能领域的重要分支之一,利用神经网络模拟人类大脑的学习过程,通过数据训练模型以自动提取特征、识别模式、进行分类和预测等任务。近年来,深度学习在多个领域取得显著进展,尤其在自然语言处理、计算机视觉、语音识别和机器翻译等方面实现了突破性进展。方向一:深度学习的基本原理和算法深度学习基于神经网络概念,涉及反向传播、卷积神经网络、循环神经网络等算法。这些算法模拟人脑神经元间的
- Pytorch学习记录-接近人类水平的GEC(使用混合机器翻译模型)
我的昵称违规了
五月第二周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的8.NearHuman-LevelPerformanceinGrammaticalErrorCorrectionwithHybridMachineTranslation昨天一天没看论文,发现我文献阅读速度太
- 【Transformer】Transformer的简单了解:Positional Encoding、Self-attention、Batch 与 Layer Norm 等
magic_ll
transformer深度学习
自从2017年Transformer模型被提出以来,它已经从论文最初的机器翻译领域,转向语音,图像,视频等等方面的应用。最近的SegmentAnything论文提出,阅读论文其中大量的transformer的在图像方面的应用。所以这里还是加紧记录下transformer相关内容。transformer初了解PositionalEncoding(位置编码)Self-attention(自注意力机制)
- ChatGPT和LLM
小米人er
我的博客chatgpt
ChatGPT和LLM(大型语言模型)之间存在密切的关系。首先,LLM是一个更为抽象的概念,它包含了各种自然语言处理任务中使用的各种深度学习模型结构。这些模型通过建立深层神经网络,根据已有的大量文本数据进行文本自动生成。其核心思想是基于训练数据中的统计规律,将输入序列转化为概率分布,进而输出目标序列。这种技术广泛应用于各种自然语言处理任务,如机器翻译、语音识别、文本生成等。而ChatGPT则是基于
- 深度学习的进展
五行缺你94
笔记深度学习人工智能
深度学习是人工智能领域的一个重要分支,它利用神经网络模拟人类大脑的学习过程,通过大量数据训练模型,使其能够自动提取特征、识别模式、进行分类和预测等任务。近年来,深度学习在多个领域取得了显著的进展,尤其在自然语言处理、计算机视觉、语音识别和机器翻译等领域取得了突破性的进展。随着算法和模型的改进、计算能力的提升以及数据量的增长,深度学习的应用范围不断扩大,对各行各业产生了深远的影响。方向一:深度学习的
- NLP_自然语言处理项目(2):seq2seq_attention_机器翻译(基于PyTorch)
@硬train一发
NLP自然语言处理机器翻译pytorch
1、seq2seq_attention_机器翻译seq2seq_attention是一种基于神经网络的机器翻译模型,它通过编码器和解码器两个部分实现翻译功能。编码器将源语言句子转换为一个固定长度的向量表示,解码器则将这个向量作为输入,生成目标语言句子的翻译结果。在seq2seq_attention中,编码器和解码器都是由循环神经网络(RNN)组成的。编码器将源语言句子中的每个单词依次输入RNN,每
- 【自然语言处理】seq2seq模型—机器翻译
X.AI666
自然语言处理自然语言处理机器翻译人工智能
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例简介seq2seq是神经机器翻译的主流框架,如今的商用机器翻译系统大多都基于其构建,在本案例中,我们将使用由NIST提供的中英文本数据训练一个简单
- 矩阵求逆(JAVA)利用伴随矩阵
qiuwanchi
利用伴随矩阵求逆矩阵
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(利用伴随矩阵)
* @author 邱万迟
- 单例(Singleton)模式
aoyouzi
单例模式Singleton
3.1 概述 如果要保证系统里一个类最多只能存在一个实例时,我们就需要单例模式。这种情况在我们应用中经常碰到,例如缓存池,数据库连接池,线程池,一些应用服务实例等。在多线程环境中,为了保证实例的唯一性其实并不简单,这章将和读者一起探讨如何实现单例模式。 3.2
- [开源与自主研发]就算可以轻易获得外部技术支持,自己也必须研发
comsci
开源
现在国内有大量的信息技术产品,都是通过盗版,免费下载,开源,附送等方式从国外的开发者那里获得的。。。。。。
虽然这种情况带来了国内信息产业的短暂繁荣,也促进了电子商务和互联网产业的快速发展,但是实际上,我们应该清醒的看到,这些产业的核心力量是被国外的
- 页面有两个frame,怎样点击一个的链接改变另一个的内容
Array_06
UIXHTML
<a src="地址" targets="这里写你要操作的Frame的名字" />搜索
然后你点击连接以后你的新页面就会显示在你设置的Frame名字的框那里
targerts="",就是你要填写目标的显示页面位置
=====================
例如:
<frame src=&
- Struts2实现单个/多个文件上传和下载
oloz
文件上传struts
struts2单文件上传:
步骤01:jsp页面
<!--在进行文件上传时,表单提交方式一定要是post的方式,因为文件上传时二进制文件可能会很大,还有就是enctype属性,这个属性一定要写成multipart/form-data,不然就会以二进制文本上传到服务器端-->
<form action="fileUplo
- 推荐10个在线logo设计网站
362217990
logo
在线设计Logo网站。
1、http://flickr.nosv.org(这个太简单)
2、http://www.logomaker.com/?source=1.5770.1
3、http://www.simwebsol.com/ImageTool
4、http://www.logogenerator.com/logo.php?nal=1&tpl_catlist[]=2
5、ht
- jsp上传文件
香水浓
jspfileupload
1. jsp上传
Notice:
1. form表单 method 属性必须设置为 POST 方法 ,不能使用 GET 方法
2. form表单 enctype 属性需要设置为 multipart/form-data
3. form表单 action 属性需要设置为提交到后台处理文件上传的jsp文件地址或者servlet地址。例如 uploadFile.jsp 程序文件用来处理上传的文
- 我的架构经验系列文章 - 前端架构
agevs
JavaScriptWeb框架UIjQuer
框架层面:近几年前端发展很快,前端之所以叫前端因为前端是已经可以独立成为一种职业了,js也不再是十年前的玩具了,以前富客户端RIA的应用可能会用flash/flex或是silverlight,现在可以使用js来完成大部分的功能,因此js作为一门前端的支撑语言也不仅仅是进行的简单的编码,越来越多框架性的东西出现了。越来越多的开发模式转变为后端只是吐json的数据源,而前端做所有UI的事情。MVCMV
- android ksoap2 中把XML(DataSet) 当做参数传递
aijuans
android
我的android app中需要发送webservice ,于是我使用了 ksop2 进行发送,在测试过程中不是很顺利,不能正常工作.我的web service 请求格式如下
[html]
view plain
copy
<Envelope xmlns="http://schemas.
- 使用Spring进行统一日志管理 + 统一异常管理
baalwolf
spring
统一日志和异常管理配置好后,SSH项目中,代码以往散落的log.info() 和 try..catch..finally 再也不见踪影!
统一日志异常实现类:
[java]
view plain
copy
package com.pilelot.web.util;
impor
- Android SDK 国内镜像
BigBird2012
android sdk
一、镜像地址:
1、东软信息学院的 Android SDK 镜像,比配置代理下载快多了。
配置地址, http://mirrors.neusoft.edu.cn/configurations.we#android
2、北京化工大学的:
IPV4:ubuntu.buct.edu.cn
IPV4:ubuntu.buct.cn
IPV6:ubuntu.buct6.edu.cn
- HTML无害化和Sanitize模块
bijian1013
JavaScriptAngularJSLinkySanitize
一.ng-bind-html、ng-bind-html-unsafe
AngularJS非常注重安全方面的问题,它会尽一切可能把大多数攻击手段最小化。其中一个攻击手段是向你的web页面里注入不安全的HTML,然后利用它触发跨站攻击或者注入攻击。
考虑这样一个例子,假设我们有一个变量存
- [Maven学习笔记二]Maven命令
bit1129
maven
mvn compile
compile编译命令将src/main/java和src/main/resources中的代码和配置文件编译到target/classes中,不会对src/test/java中的测试类进行编译
MVN编译使用
maven-resources-plugin:2.6:resources
maven-compiler-plugin:2.5.1:compile
&nbs
- 【Java命令二】jhat
bit1129
Java命令
jhat用于分析使用jmap dump的文件,,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。 jhat默认开启监听端口7000的HTTP服务,jhat是Java Heap Analysis Tool的缩写
1. 用法:
[hadoop@hadoop bin]$ jhat -help
Usage: jhat [-stack <bool&g
- JBoss 5.1.0 GA:Error installing to Instantiated: name=AttachmentStore state=Desc
ronin47
进到类似目录 server/default/conf/bootstrap,打开文件 profile.xml找到: Xml代码<bean
name="AttachmentStore"
class="org.jboss.system.server.profileservice.repository.AbstractAtta
- 写给初学者的6条网页设计安全配色指南
brotherlamp
UIui自学ui视频ui教程ui资料
网页设计中最基本的原则之一是,不管你花多长时间创造一个华丽的设计,其最终的角色都是这场秀中真正的明星——内容的衬托
我仍然清楚地记得我最早的一次美术课,那时我还是一个小小的、对凡事都充满渴望的孩子,我摆放出一大堆漂亮的彩色颜料。我仍然记得当我第一次看到原色与另一种颜色混合变成第二种颜色时的那种兴奋,并且我想,既然两种颜色能创造出一种全新的美丽色彩,那所有颜色
- 有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。写一个函数实现。复杂度是什么。
bylijinnan
java算法面试
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
/**
* http://weibo.com/1915548291/z7HtOF4sx
* #面试题#有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。
* 写一个函数实现。复杂度是什么
- struts2获得request、session、application方式
chiangfai
application
1、与Servlet API解耦的访问方式。
a.Struts2对HttpServletRequest、HttpSession、ServletContext进行了封装,构造了三个Map对象来替代这三种对象要获取这三个Map对象,使用ActionContext类。
----->
package pro.action;
import java.util.Map;
imp
- 改变python的默认语言设置
chenchao051
python
import sys
sys.getdefaultencoding()
可以测试出默认语言,要改变的话,需要在python lib的site-packages文件夹下新建:
sitecustomize.py, 这个文件比较特殊,会在python启动时来加载,所以就可以在里面写上:
import sys
sys.setdefaultencoding('utf-8')
&n
- mysql导入数据load data infile用法
daizj
mysql导入数据
我们常常导入数据!mysql有一个高效导入方法,那就是load data infile 下面来看案例说明
基本语法:
load data [low_priority] [local] infile 'file_name txt' [replace | ignore]
into table tbl_name
[fields
[terminated by't']
[OPTI
- phpexcel导入excel表到数据库简单入门示例
dcj3sjt126com
PHPExcel
跟导出相对应的,同一个数据表,也是将phpexcel类放在class目录下,将Excel表格中的内容读取出来放到数据库中
<?php
error_reporting(E_ALL);
set_time_limit(0);
?>
<html>
<head>
<meta http-equiv="Content-Type"
- 22岁到72岁的男人对女人的要求
dcj3sjt126com
22岁男人对女人的要求是:一,美丽,二,性感,三,有份具品味的职业,四,极有耐性,善解人意,五,该聪明的时候聪明,六,作小鸟依人状时尽量自然,七,怎样穿都好看,八,懂得适当地撒娇,九,虽作惊喜反应,但看起来自然,十,上了床就是个无条件荡妇。 32岁的男人对女人的要求,略作修定,是:一,入得厨房,进得睡房,二,不必服侍皇太后,三,不介意浪漫蜡烛配盒饭,四,听多过说,五,不再傻笑,六,懂得独
- Spring和HIbernate对DDM设计的支持
e200702084
DAO设计模式springHibernate领域模型
A:数据访问对象
DAO和资源库在领域驱动设计中都很重要。DAO是关系型数据库和应用之间的契约。它封装了Web应用中的数据库CRUD操作细节。另一方面,资源库是一个独立的抽象,它与DAO进行交互,并提供到领域模型的“业务接口”。
资源库使用领域的通用语言,处理所有必要的DAO,并使用领域理解的语言提供对领域模型的数据访问服务。
- NoSql 数据库的特性比较
geeksun
NoSQL
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
1. 数据模型
作为Key-value型数据库,Redis也提供了键(Key)和值(Value)的映射关系。除了常规的数值或字符串,Redis的键值还可以是以下形式之一:
Lists (列表)
Sets
- 使用 Nginx Upload Module 实现上传文件功能
hongtoushizi
nginx
转载自: http://www.tuicool.com/wx/aUrAzm
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦。Nginx有一个Upload模块,可以非常简单的实现文件上传功能。此模块的原理是先把用户上传的文件保存到临时文件,然后在交由后台页面处理,并且把文件的原名,上传后的名称,文件类型,文件大小set到页面。下
- spring-boot-web-ui及thymeleaf基本使用
jishiweili
springthymeleaf
视图控制层代码demo如下:
@Controller
@RequestMapping("/")
public class MessageController {
private final MessageRepository messageRepository;
@Autowired
public MessageController(Mes
- 数据源架构模式之活动记录
home198979
PHP架构活动记录数据映射
hello!架构
一、概念
活动记录(Active Record):一个对象,它包装数据库表或视图中某一行,封装数据库访问,并在这些数据上增加了领域逻辑。
对象既有数据又有行为。活动记录使用直截了当的方法,把数据访问逻辑置于领域对象中。
二、实现简单活动记录
活动记录在php许多框架中都有应用,如cakephp。
<?php
/**
* 行数据入口类
*
- Linux Shell脚本之自动修改IP
pda158
linuxcentosDebian脚本
作为一名
Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名、ip信息、网关等配置。修改成特定的主机名在维护和管理方面也比较方便。如下脚本用途为:修改ip和主机名等相关信息,可以根据实际需求修改,举一反三!
#!/bin/sh
#auto Change ip netmask ga
- 开发环境搭建
独浮云
eclipsejdktomcat
最近在开发过程中,经常出现MyEclipse内存溢出等错误,需要重启的情况,好麻烦。对于一般的JAVA+TOMCAT项目开发,其实没有必要使用重量级的MyEclipse,使用eclipse就足够了。尤其是开发机器硬件配置一般的人。
&n
- 操作日期和时间的工具类
vipbooks
工具类
大家好啊,好久没有来这里发文章了,今天来逛逛,分享一篇刚写不久的操作日期和时间的工具类,希望对大家有所帮助。
/*
* @(#)DataFormatUtils.java 2010-10-10
*
* Copyright 2010 BianJing,All rights reserved.
*/
package test;
impor