- 基于深度学习的中文语音识别系统(毕设)
程序员奇奇
深度学习从入门到精通语音识别深度学习人工智能
该系统实现了基于深度框架的语音识别中的声学模型和语言模型建模,其中声学模型包括CNN-CTC、GRU-CTC、CNN-RNN-CTC,语言模型包含transformer、CBHG,数据集包含stc、primewords、Aishell、thchs30四个数据集。本项目现已训练一个迷你的语音识别系统,将项目下载到本地上,下载thchs数据集并解压至data,运行test.py,不出意外能够进行识别,
- 音频基础知识
littlezls
audio多媒体开发类音视频网络android
系列文章目录多媒体音频基础知识及格式的介绍文章系列:音频基础知识介绍:音频基础知识https://blog.csdn.net/littlezls/article/details/135917303音频基础知识介绍:音频几个相关概念及心理声学模型https://blog.csdn.net/littlezls/article/details/135499627音频编解码格式介绍:音频编码格式介绍htt
- 【语音合成】中文-多情感领域-16k-多发音人
太空眼睛
人工智能tts语音合成数字人modelscopepython
模型介绍语音合成-中文-多情感领域-16k-多发音人框架描述拼接法和参数法是两种Text-To-Speech(TTS)技术路线。近年来参数TTS系统获得了广泛的应用,故此处仅涉及参数法。参数TTS系统可分为两大模块:前端和后端。前端包含文本正则、分词、多音字预测、文本转音素和韵律预测等模块,它的功能是把输入文本进行解析,获得音素、音调、停顿和位置等语言学特征。后端包含时长模型、声学模型和声码器,它
- 音频几个相关概念及心理声学模型
littlezls
多媒体audio开发类音视频
系列文章目录音频格式的介绍文章系列:音频编解码格式介绍:音频几个相关概念及心理声学模型https://blog.csdn.net/littlezls/article/details/135499627音频编解码格式介绍:音频编码格式介绍https://blog.csdn.net/littlezls/article/details/135862140音频编解码格式介绍(1)ADPCM:adpcm编解
- 【语音基础】语音相关的基础
liefyuan
音频语音识别
文章目录端到端模型与传统模型的区别传统模型(非端到端模型)端到端模型如何理解强制对齐?麦克风的类型有哪些?语音识别框架和模型语音采样率语音识别资料端到端模型与传统模型的区别传统模型(非端到端模型)传统模型通常由不同的组件组成,例如文本处理模块、声学模型、声码器等等。一方面不同的组件之间相互组装设计比较费力。另一方面由于组件之间单独训练,可能会到导致每个组成部分之间的错误会叠加,从而不断放大误差。例
- 语音识别软件列表
李二狗的星球
翻译自Wikipedia,大部分的开源的或商用的智能语音识别软件工具介绍。大部分的开源声学模型和语音语料库都是只支持英语的,所以在这里就不介绍了,重点介绍一下终端输入采集的工具介绍:在Chrome浏览器中作为Web应用程序运行的语音识别软件。他们使用HTML5Web-Speech-API:基于chrome的跨平台webapps只介绍以下三款免费的工具:voicenotenook:免费听写,语音输入
- 人工智能知识
奥利奥利奥利奥
人工智能
11语音处理语音识别系统框架:特征提取(mfcc、傅立叶)->声学模型(高斯混合)->语言模型->解码搜索特征提取:梅尔频率倒谱系数、傅里叶变换声学模型:高斯混合模型-隐马尔可夫模型14多智能体系统自主性、主动性、反应能力、社会能力产生式表示:规则:IFATHEMB(置信度默认100)事实:(Li,Age,40,默认0.1)框架表示法:框架(事物)-槽(各个方面)-侧面-值框架表示法是一种适应性强
- 数据压缩实验——MPEG音频编码实验
qq_43310997
mpg音频编码解码c++
目录实验原理MPEG-1AudioLayerII编码器原理基本思想两条线时-频分析的矛盾心理声学模型MPEG-1音频编码器框架图MPEG-1声音的主要性能多相滤波器组心理声学模型比特分配器装帧实验要求程序分析调试及实验结果输出音频的采样率和目标码率输出某个数据帧所分配的比特数,比例因子,比特分配结果结果分析实验原理MPEG-1AudioLayerII编码器原理基本思想分析信号,去掉不能被感知的部分
- 超详细讲解CTC理论和实战
奈何缘浅wyj
CTC简介对于语音识别来说,训练数据的输入是一段音频,输出是它转录的文字(transcript),但是我们是不知道字母和语音是怎么对齐(align)的。这使得训练语音识别比看起来更加复杂。要人来标注这种对齐是非常困难而且容易出错的,因为很多音素的边界是很难区分,比如下图,人通过看波形或者频谱是很难准确的区分其边界的。之前基于HMM的语音识别系统在训练声学模型是需要对齐,我们通常会让模型进行强制对齐
- 语音识别(五)——Mel-Frequency Analysis, FBank, 语音识别的评价指标, 声学模型进阶
antkillerfarm
语音识别
CepstrumAnalysis(续)这里,我们对Fouriertransform做一个简单的回顾。设h(t)是一个时域函数,而H(f)是一个频域函数,则Fouriertransform为:H(f)=∫∞−∞h(t)e2πiftdtH(f)=∫−∞∞h(t)e2πiftdtinverseFouriertransformation为:h(t)=∫∞−∞H(f)e−2πiftdfh(t)=∫−∞∞H(
- 最新综述:跨语言语音合成方法的发展趋势与方向
PaperWeekly
编程语言python机器学习人工智能深度学习
©PaperWeekly原创·作者|音月引言语音合成(Text-to-Speech,TTS)是指文字转语音相关技术。随着人工智能技术的发展,TTS的声学模型和声码器模型效果都在不断提高,单一语言在数据量足够的情况下已经可以合成较高品质的语音。研究人员们也逐渐开始关注跨语言语音合成领域,本文主要介绍了近年来跨语言语音合成方法的发展趋势与方向。背景早期人们为了合成跨语言的发音只能用多个语音合成系统来合
- 人机交互-语音交互方法综述
yuxy36
人机交互
上图展示了智能语音的界面架构,从中可以看出,语音交互所涉及的技术模块有4个部分,如下图所示:首先,通过应用自动语音识别技术听到用户说的话,然后应用自然语言理解来分析语句的含义,随后用自然语言生成对话结果,最后应用文字转语音技术将结果播放给用户,完成与用户的语音交互。下面分别介绍这几种技术:自动语音识别:AutomaticSpeechRecognition,ASRASR是通过声学模型和语言模型,将人
- 以语音评测的PC端demo代码为例,讲解口语评测如何实现
腾讯云开发者
人工智能语音云计算程序员
本文由云+社区发表作者:腾讯智慧教育概述腾讯云智聆口语评测(英文版)(SmartOralEvaluation-English,SOE-E)是腾讯云推出的语音评测产品,是基于英语口语类教育培训场景和腾讯云的语音处理技术,应用特征提取、声学模型和语音识别算法,为儿童和成人提供高准确度的英语口语发音评测。腾讯云智聆口语评测(英文版)支持单词和句子模式的评测,多维度反馈口语表现,可广泛应用于英语口语类教学
- 语音信号的线性预测分析及其Matlab源码
美丽风景-c
matlab语音识别开发语言Matlab
语音信号的线性预测分析及其Matlab源码线性预测分析(LinearPredictiveAnalysis,简称LPA)是一种常用的语音信号处理技术,用于估计语音信号的声道特性和预测下一个样本的值。在本文中,我们将介绍语音信号的线性预测分析原理,并提供相应的Matlab源码示例。线性预测分析的原理基于声学模型假设,即语音信号可以看作是通过一个线性滤波器(声道)作用于激励信号(声带振动)而产生的。该滤
- 基于深度学习的语音识别算法的设计与实现
01图灵科技
深度学习python深度学习语音识别算法
收藏和点赞,您的关注是我创作的动力文章目录概要一、课题内容二、需求分析2.1算法需求分析2.2语音录制2.3声学模型2.4语言模型2.5训练集和测试集2.6深度神经网络三算法设计原理3.1语音识别系统3.1.1声学模型3.1.2语言模型3.1.3发音词典四简单问答功能1.界面展示:2.录音模块的功能:3.语音解码功能:4.语音问答功能:5.翻译功能:五结论目录概要 语音识别(SpeechReco
- 四、音频编解码
Mjs
声音的三要素音调:音频,小孩>女孩>男孩音量:声音振动幅度音色:材质有关,本质是谐波心理声学模型人类的听觉范围:20Hz-20KHzPCM(脉冲编码调制)模拟信号转化为数字信号的到的数据PCM数据采样量化编码⾳频信号的传输率=取样频率*样本量化⽐特数*通道数样本值的量化⽐特数=16普通⽴体声的信号通道数=2数字信号传输码流⼤约1.4Mbit/s⼀秒钟的数据量为1.4Mbit/(8/Byte)达17
- CocosCreator3.8研究笔记(十三)CocosCreator 音频资源理解
w风雨无阻w
CocosCreator3.8笔记音视频CocosCreatorCocosCreator3.8Cocosjavascript
1、CocosCreator支持音频格式目前CocosCreator支持以下格式的音频文件:音频格式说明.ogg.ogg是一种开源的有损音频压缩格式,与同类型的音频压缩格式相比,优点在于支持多声道编码,采用更加先进的声学模型来减少损失音质,同时文件大小在相同条件下比.mp3格式小。目前Android系统所有的内置铃声也都使用.ogg文件。.mp3.mp3是最常见的一种数字音频编码和有损压缩格式。通
- 音乐基础、音频合成、特征提取工具liborsa
缠禅可禅
[TOC]工具Kaldi,虽然非常高效,表现也好,但是忒难用,不灵活,总得改C++代码;PyKaldi,虽然用上了机器学习界宠儿Python,但本质上跟Kaldi还是一回事嘛;PyTorch-Kaldi,虽然灵活了一些,声学模型也易于修改,但是,跟前面一样,它也还是Kaldi呀;ESPNET,虽然是基于Python和PyTorch的,但是只支持端到端语音识别,太不全面了;macos软件:http:
- 智能语音对话处理过程
xiyt
自然语言处理神经网络机器学习自动驾驶人工智能
ASR(AutomaticSpeechRecognition):语音识别,听见你说的是什么,转化成文字。NLU(NaturalLanguageUnderstanding):自然语言理解,知道你想干什么,理解你话中的意图。NLG(NaturalLanguageGeneration):自然语言生成,输出内容发音标注。TTS(TextToSpeech):语音合成,机器合成输出语音。声学模型发声的基本音素
- 基于MFCC特征提取和HMM模型的语音合成算法matlab仿真
简简单单做算法
MATLAB算法开发#视频语音语音识别人工智能MFCC特征提取HMM模型语音合成
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022A3.部分核心程序............................................................................%hmm是已经建立好的声学模型库loadhmm.matfori=1:l
- 语音识别 — 特征提取 MFCC 和 PLP
无水先生
语音处理语音识别人工智能
一、说明语音识别是一种技术,通过计算机和软件系统,将人们的口头语言转换为计算机可读的文本或命令。它使用语音信号处理算法来识别和理解人类语言,并将其转换为计算机可处理的格式。语音识别技术被广泛应用于许多领域,如语音助手、语音控制、语音翻译、语音搜索、电话自动接听等。二、基本问题提出回到语音识别,我们的目标是根据声学和语言模型找到与音频对应的最佳单词序列。为了创建声学模型,我们的观察X由一系列声学特征
- AI大语音(十)——N-gram语言模型(深度解析)
AI大道理
语音识别(ASR)机器学习算法语音识别
本文来自公众号“AI大道理”。这里既有AI,又有生活大道理,无数渺小的思考填满了一生。上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声
- cocosCreator笔记 之 背景音乐
FlyingBird~
cocosCreatorcocos2d
版本:3.4简介cocosCreator目前支持的音频格式:音频格式说明.ogg开源的有损压缩格式。与同类型的音频相比,优点在于支持多声道编码,采用更加先进的声学模型来减少损失音质,同时文件大小比.mp3格式小。.mp3最常见的数字音频编码和有损压缩格式。通过舍弃PCM音频资料中对人类听觉不重要的部分,达到压缩缩小文件的目的。被大量软硬件支持,应用广泛,是目前的主流。.wav一种标准数字音频文件,
- 声音合成与克隆——制作用于训练的声音数据集
知来者逆
语音合成声音克隆人声伴奏提取UVRAdobeAudition
前言1.PaddleSpeech是一个简单易用的all-in-one的语音工具箱,支持语音处理的相关操作,如语音知别,语音合成,声纹识别,声音分类,语音翻译,语音唤醒等多个方向的应用开发。这里只使用到语音合成与声音克隆,主要由文本前端(TextFrontend)、声学模型(AcousticModel)和声码器(Vocoder)三个主要模块,模块工作流程如下:通过文本前端模块将原始文本转换为字符/音
- CTC-based AM for ASR总结
ChongmingLiu
一、利用可变长度上下文信息的声学模型DL/HMM混合模型是ASR中成功的第一个深度学习体系,仍然是工业中使用的主流模型。DL/HMM够利用上下文信息是其优越性能的一个重要因素。在大多数系统中,9~13帧的窗口(overlap4~6帧)的特征用作DNN的输入,以利用来自相邻帧的信息以提高精度。最优的上下文长度是受语速和音调影响的,因此需要变长的上下文信息。A.RNNs前馈DNNS只考虑固定长度滑动窗
- 基于卷积神经网络和连接性时序分类的语音识别系统,含核心Python工程源代码(深度学习)个人可二次开发
小胡说人工智能
语音交互深度学习深度学习cnn自然语言处理语音识别python
目录前言总体设计系统整体结构图系统流程图运行环境模块实现1.特征提取2.声学模型3.CTC解码4.语言模型系统测试工程源代码下载其它资料下载前言本项目基于卷积神经网络和连接性时序分类方法,采用中文语音数据集进行训练,实现声音转录为中文拼音,并将拼音序列转换为中文文本。本项目提供的是一套完整的语音识别解决方案,可以帮助用户快速搭建语音识别应用,适用于多种场景下的需求。伙伴们可以通过该工程源码,进行个
- 使用轻改版PaddleSpeech套件训练自己的AI歌手-声学模型篇
AI Studio
人工智能语音识别
★★★本文源自AIStudio社区精品项目,【点击此处】查看更多精品内容>>>使用轻改版PaddleSpeech套件训练自己的AI歌手-声学模型篇现在你可以拥有自己的AI歌手啦,在AiStudio中上传数据集后,按照下面的步骤进行操作,经过漫长的训练等待后(4~14天),就可以拥有一个不错的AI歌手了。项目魔改自PaddleSpeech中的Fastspeech2说话人模型,有兴趣的同好可以去阅读相
- 各大公司的语音技术调研
horse_tf
背景:针对声学模型的调研,时间2019年8月SpeechRecognitiononLibriSpeechtest-otherLibriSpeech上的WER排名1.google的语音识别技术(LAS:LSTM+Attentionn)论文1(2018年):STATE-OF-THE-ARTSPEECHRECOGNITIONWITHSEQUENCE-TO-SEQUENCEMODELS摘要:基于注意力机制
- TTS | 语音合成论文概述
夏天|여름이다
-TTS-语音识别人工智能TTS语音合成
综述系列2021_ASurveyonNeuralSpeechSynthesis论文:2106.15561.pdf(arxiv.org)论文从两个方面对神经语音合成领域的发展现状进行了梳理总结(逻辑框架如图1所示):核心模块:分别从文本分析(textanalysis)、声学模型(acousticmodel)、声码器(vocoder)、完全端到端模型(fullyend-to-endmodel)等方面进
- [VLDB2019]DLM:微信大规模分布式n-gram语言模型系统
OpenIM
即时通讯IM语音识别自然语言处理
Wechat&NUS《ADistributedSystemforLarge-scalen-gramLanguageModelsatTencent》分布式语言模型,支持大型n-gramLM解码的系统。本文是对原VLDB2019论文的简要翻译摘要n-gram语言模型广泛用于语言处理,例如自动语音识别(ASR)。它可以对从发生器(例如声学模型)产生的候选单词序列进行排序。大型n-gram模型通常可以提供
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不