- LangChain中的向量数据库接口-Weaviate
洪城叮当
langchain数据库经验分享笔记交互人工智能知识图谱
文章目录前言一、原型定义二、代码解析1、add_texts方法1.1、应用样例2、from_texts方法2.1、应用样例3、similarity_search方法3.1、应用样例三、项目应用1、安装依赖2、引入依赖3、创建对象4、添加数据5、查询数据总结前言 Weaviate是一个开源的向量数据库,支持存储来自各类机器学习模型的数据对象和向量嵌入,并能无缝扩展至数十亿数据对象。它提供存储文档嵌
- 深度学习模型表征提取全解析
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython深度学习人工智能pythonembedding语言模型
模型内部进行表征提取的方法在自然语言处理(NLP)中,“表征(Representation)”指将文本(词、短语、句子、文档等)转化为计算机可理解的数值形式(如向量、矩阵),核心目标是捕捉语言的语义、语法、上下文依赖等信息。自然语言表征技术可按“静态/动态”“有无上下文”“是否融入知识”等维度划分一、传统静态表征(无上下文,词级为主)这类方法为每个词分配固定向量,不考虑其在具体语境中的含义(无法解
- LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython计算机视觉人工智能机器学习算法深度学习
LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的有个假设:就是最后一个词语融合了前面词语的信息减法操作主要用于提取模型内部表征中的"诚实性"概念向量。具体来说,这是通过对比诚实和不诚实场景下的模型隐藏状态实现的。importtorchfromtransformersimportAutoModelForCausalLM,AutoTokenizer,AutoConfigimportnum
- NumPy-@运算符详解
GG不是gg
numpynumpy
NumPy-@运算符详解一、@运算符的起源与设计目标1.从数学到代码:符号的统一2.设计目标二、@运算符的核心语法与运算规则1.基础用法:二维矩阵乘法2.一维向量的矩阵语义3.高维数组:批次矩阵运算4.广播机制:灵活的形状匹配三、@运算符与其他乘法方式的核心区别1.对比`np.dot()`2.对比元素级乘法`*`3.对比`np.matrix`的`*`运算符四、典型应用场景:从基础到高阶1.深度学习
- 任鸟飞FPS类型游戏绘制,骨骼,u3d,UE4和游戏安全,反外挂研究 (三)
任鸟飞逆向~
FPSC语言网络安全3d游戏ue4
书接上文,我们非矩阵的方式绘制是没有那么的精确的在学习矩阵之前,我们先来了解下绘制的几种方法绘制的几种方法和反外挂建议第一种hookd3d/opengl优点:不闪,代码简单缺点:非常容易被检测第二种窗口上自行绘制,但是会闪优缺点适中第三种自建透明窗口,覆盖游戏窗口,透明窗口上绘制优点:稳定确定:代码复杂,会闪反外挂:无非就是针对外挂使用的函数进行检测深入学习矩阵对象的世界坐标列向量xyzw(w为了
- 资源分享-FPS, 矩阵, 骨骼, 绘制, 自瞄, U3D, UE4逆向辅助实战视频教程
小零羊
矩阵3due4
文章底部获取资源教程概述本视频教程专为游戏开发者和安全研究人员设计,涵盖FPS游戏设计、矩阵运算、骨骼绘制、自瞄算法、U3D和UE4逆向辅助等实战内容。通过102节详细视频教程,您将掌握从基础到高级的游戏开发与安全防护技能。教程内容1.FPS类型游戏的设计研究和游戏安全,反外挂研究2.二维向量和平面距离3.atan2和tan4.三维向量和空间距离5.补充向量乘法6.矩阵和矩阵的运算7.矩阵的特性8
- 【常见滤波器】PCL 点云投影到拟合平面
X-Vision
《PCL算法案例开发》平面3dpcl计算机视觉算法点云
PCL点云投影到拟合平面-原理、实现与最佳实践目录平面投影的核心原理⚙️PCL平面投影架构基础平面投影实现高级投影技术与优化投影质量评估与分析️工程应用案例⚠️常见问题与解决方案可视化与调试平面投影的核心原理数学原理与几何概念点云投影到拟合平面是将三维点云数据降维到二维平面的过程,核心思想是正交投影:平面方程:ax+by+cz+d=0ax+by+cz+d=0ax+by+cz+d=0平面法向量:n=
- bert中 [CLS] 和 [SEP] 表示什么意思?
[CLS]和[SEP]是BERT中的两个特殊标记符号,在BERT的输入文本中起到特殊的作用。[CLS]是"classification"的缩写,在文本分类任务中,它通常表示句子或文档的开头。在BERT中,[CLS]对应着输入文本中第一个词的词向量,输出层中的第一个神经元通常会被用来预测文本的类别。[SEP]是"separator"的缩写,它通常表示句子或文档的结尾。在BERT中,[SEP]对应着输
- 深度学习预备知识
AmazingMQ
深度学习人工智能
1.Tensor张量定义:张量(tensor)表示一个由数值组成的数组,这个数组可能有多个维度(轴)。具有一个轴的张量对应数学上的向量,具有两个轴的张量对应数学上的矩阵,具有两个以上轴的张量目前没有特定的数学名称。importtorch#arange创建一个行向量x,这个行向量包含以0开始的前12个整数。x=torch.arange(12)print("x=",x)#x=tensor([0,1,2
- Python 语音识别系列-实战学习-语音识别特征提取
Python语音识别系列-实战学习-语音识别特征提取前言1.预加重、分帧和加窗2.提取特征3.可视化特征4.总结前言语音识别特征提取是语音处理中的一个重要环节,其主要任务是将连续的时域语音信号转换为连续的特征向量,以便于后续的语音识别和语音处理任务。在特征提取阶段,这些特征向量能够捕捉到语音信号中的关键信息,如音调、音色和音节等。特征提取主要可以分为以下几个方面:时域特征提取:包括自相关函数、方差
- ARMv7单核CPU上SWI(软件中断)验证
liuluyang530
FPGA验证软件中断armcpu异常处理
在ARMv7单核CPU上验证SWI(软件中断)功能需结合硬件初始化、异常向量表配置、处理函数实现及调试手段,以下是详细验证方案:一、验证环境搭建1.硬件准备开发板:搭载ARMv7单核CPU(如Cortex-A7/A8/A9)的嵌入式板(如树莓派、BeagleBone或自定义板)。调试工具:JTAG/SWD调试器(如J-Link、ST-Link)用于单步调试和寄存器查看。串口工具(如UART转USB
- 华为OD技术面试高频考点(算法篇、AI方向)
一、Transformer核心机制:自注意力(Self-Attention)公式:Attention=softmax(QK^T/√d_k)v运作原理:1.Q/K/V矩阵:输入向量通过线性变换生成Query(查询)、Key(键)、Value(值)2.注意力权重:Softmax(QKT/√d_k)→计算词与词之间的关联度3.输出:权重与Value加权求和→捕获长距离依赖-优势:并行计算、全局上下文感知
- 【RAG实战指南 Day 13】嵌入模型选择与性能对比
在未来等你
Java场景面试宝典RAG嵌入模型语义搜索信息检索向量数据库
【RAG实战指南Day13】嵌入模型选择与性能对比文章内容开篇欢迎来到"RAG实战指南"系列的第13天!今天我们聚焦RAG系统中的关键组件——嵌入模型。嵌入模型的质量直接影响检索效果,进而决定整个RAG系统的性能。在信息检索过程中,嵌入模型将文本转换为向量表示,其质量决定了语义搜索的准确性和召回率。本文将深入分析主流嵌入模型的技术特点、性能表现和适用场景,帮助您在项目中做出最优选择。通过本文,您将
- 请用人话给我讲讲向量和张量的联系和区别
零点零一
AI资料python人工智能机器学习
请用人话给我讲讲向量和张量的联系和区别豆包咱们先从最熟悉的概念入手,一步步说清楚向量和张量的关系与区别,保证接地气。先搞懂“维度”:生活里的例子咱们先统一一个词:维度。你可以简单理解成“描述一个东西需要几个方向/参数”。比如一根直线,只有前后(或左右)一个方向,就是1维。一张纸,有左右和上下两个方向,就是2维。咱们生活的空间,有左右、上下、前后三个方向,就是3维。再复杂点,比如描述“今天的天气”,
- Semantic text 就是那么强大,还附带一包( BBQ )薯片!配有可配置的分块设置和索引选项。
Elastic 中国社区官方博客
ElasticsearchAI大数据elasticsearch搜索引擎全文检索人工智能ai图搜索
作者:来自ElasticKathleenDeRusso语义文本搜索现在可以自定义,支持可配置的分块设置和索引选项,用于自定义向量量化,使semantic_text在专业用例中更强大。Elasticsearch拥有大量新功能,帮助你为你的用例构建最佳搜索解决方案。深入查看我们的示例笔记本以了解更多信息,开始免费云试用,或者立即在本地机器上体验Elastic。随着Elasticsearch8.18和9
- 机器学习算法:核心原理与前沿发展综述
fmvrj34202
机器学习算法人工智能
机器学习算法作为人工智能的核心驱动力,正在重塑我们解决问题的范式。本文将系统性地探讨机器学习算法的分类体系、数学基础、优化方法以及最新发展趋势,为从业者提供技术参考。一、算法分类体系根据学习范式,机器学习算法可分为三大类:监督学习:基于标注数据的建模方法线性回归:最小化平方误差的闭式解θ=(XᵀX)⁻¹Xᵀy支持向量机:通过核技巧实现非线性分类,优化目标为max(0,1-yᵢ(w·xᵢ+b))决策
- Spring AI 本地 RAG 实战:用Redis、Chroma搭建离线知识问答系统
勤奋的知更鸟
JavaAI大模型AI工具spring人工智能RAG
本文将用Ollama+Qwen-7B搭建离线知识问答系统(含Redis/Chroma向量库)目录前言环境搭建项目结构设计Maven依赖pom.xmlapplication.yml配置(Redis+Ollama)Redis向量库实战OllamaConfig.javaRagService.javaRagController.javaRagApplication.java测试样例RAG增强Maven依赖
- lstm 输入数据维度_[mcj]pytorch中LSTM的输入输出解释||LSTM输入输出详解
萬重
lstm输入数据维度
最近想了解一些关于LSTM的相关知识,在进行代码测试的时候,有个地方一直比较疑惑,关于LSTM的输入和输出问题。一直不清楚在pytorch里面该如何定义LSTM的输入和输出。首先看个pytorch官方的例子:#首先导入LSTM需要的相关模块importtorchimporttorch.nnasnn#神经网络模块#数据向量维数10,隐藏元维度20,2个LSTM层串联(如果是1,可以省略,默认为1)r
- pytorch 自动微分
this_show_time
pytorch人工智能python机器学习
自动微分1.基础概念1.1.**张量**1.2.**计算图**:1.3.**反向传播**1.4.**梯度**2.计算梯度2.1标量梯度计算2.2向量梯度计算2.3多标量梯度计算2.4多向量梯度计算3.梯度上下文控制3.1控制梯度计算(withtorch.no_grad())3.2累计梯度3.3梯度清零(torch.zero_())自动微分模块torch.autograd负责自动计算张量操作的梯度,
- 从数据到智慧:AI原生知识库构建的完整技术栈解析
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据AI-native大数据ai
从数据到智慧:AI原生知识库构建的完整技术栈解析关键词AI原生知识库、知识图谱、向量数据库、大语言模型、RAG技术、知识工程、智能问答系统摘要在人工智能飞速发展的今天,构建能够真正理解、组织和应用知识的系统已成为企业数字化转型的核心竞争力。本文将深入剖析AI原生知识库的完整技术栈,从数据采集与预处理,到知识表示与建模,再到存储架构与检索增强生成技术,全方位解读如何将原始数据转化为可行动的智慧。我们
- 大型语言模型中的提示工程系统综述:技术与应用
AI专题精讲
Paper阅读语言模型人工智能自然语言处理
摘要提示工程已成为扩展大型语言模型(LLMs)和视觉语言模型(VLMs)能力的不可或缺的技术。这种方法利用任务特定的指令(称为prompt),在不修改核心模型参数的情况下增强模型效能。与更新模型参数不同,prompt仅通过给定指令即可引出所需的模型行为,从而实现预训练模型在下游任务中的无缝集成。prompt可以是提供上下文以引导模型的自然语言指令,也可以是激活相关知识的学习向量表示。这一新兴领域已
- 从零开始:构建支持上下文窗口的AI原生应用实战指南
AI天才研究院
AI人工智能与大数据AI-nativeai
从零开始:构建支持上下文窗口的AI原生应用实战指南关键词:大语言模型(LLM)、上下文窗口、AI原生应用、token管理、对话状态保持、向量检索、记忆压缩摘要:本文从AI原生应用的核心需求出发,系统讲解支持上下文窗口的应用构建全流程。通过解析上下文窗口的技术本质、关键挑战及解决方案,结合Python代码实战和真实场景案例,帮助开发者掌握从需求分析到落地部署的完整方法。内容涵盖上下文窗口管理策略、t
- C#实现SVM支持向量机(附完整源码)
源代码大师
C#实战教程c#支持向量机开发语言
C#实现SVM支持向量机下面是使用C#实现支持向量机(SVM)的示例代码:usingSystem;usingAccord.MachineLearning.VectorMachines;usingAccord.MachineLearning.VectorMachines.Learning;usingAccord
- AI驱动的个人工作革命:基于DeepSeek构建全场景智能工作助理(含源代码+多应用场景)
AI_DL_CODE
DeepSeek深度应用人工智能DeepSeek个人智能助理LangChain任务自动化知识管理大模型应用
摘要:本文详细阐述基于DeepSeek大模型构建个人工作助理的完整技术方案,通过LangChain实现任务分解、知识检索与工具调用的智能协同。方案融合向量数据库、多模态交互与个性化学习算法,构建涵盖邮件处理、会议管理、文档生成等15大核心工作场景的自动化系统。文中提供可运行代码、完整部署指南及效能测试数据,实现邮件处理效率提升13倍、会议纪要生成时间缩短100%、任务安排错误率降低83%的显著优化
- 上下文工程:AI 智能体架构落地的关键新技术
一休哥助手
人工智能人工智能架构
摘要随着大语言模型(LLM)驱动的智能体(Agent)逐渐成为下一代人机交互的核心范式,上下文管理已成为决定智能体性能与可靠性的关键瓶颈。本文提出“上下文工程”(ContextEngineering)作为智能体架构落地的核心技术方向,系统阐述其在解决长上下文依赖、多轮交互一致性、动态知识更新等挑战中的核心作用。通过分层架构设计、动态压缩策略与向量化增强技术,上下文工程显著提升智能体的记忆效率与推理
- OpenSearch 向量搜索与Qwen3-Embedding 集成示例
ZHOU_CAMP
RAG数据库dockerRAGopensearchagent
本项目演示了如何将OpenSearch的k-NN(k-NearestNeighbors)向量搜索功能与OpenAI的高级文本嵌入模型(如Qwen3-Embedding)相结合,以实现强大的语义搜索。核心概念文本嵌入(TextEmbedding):将文本(单词、句子、段落)转换为一个高维的数字向量。语义上相似的文本在向量空间中的距离会更近。Qwen3-Embedding:我们调用Qwen3-Embe
- Apache Cloudberry 向量化实践(二):如何识别和定位向量化系统的性能瓶颈?
数据库
如何系统性识别并定位向量化执行链路中的性能瓶颈?本文将结合分析方法论与实践案例,帮助大家建立起优化的基本盘。性能问题从何而来?向量化系统中的性能瓶颈往往不易察觉。它可能是某个操作符计算效率低下,也可能是某次调度延迟过大,甚至是系统某一阶段发生了资源争抢。大致来看,性能瓶颈来源可分为以下几类:计算瓶颈(on-CPU):如表达式编译低效、算子计算逻辑复杂等。等待瓶颈(off-CPU):如线程调度延迟、
- Attention机制完全解析:从原理到ChatGPT实战
学废了wuwu
chatgpt
一、Attention的本质与计算步骤1.1核心思想动态聚焦:Attention是一种信息分配机制,让模型在处理输入时动态关注最重要的部分。类比:像人类阅读时用荧光笔标记关键句子。1.2计算三步曲(以"吃苹果"为例)Q(Query)、K(Key)、V(Value)的分工角色数学表示作用类比QW_q·输入向量主动提问者:表示当前需要关注什么好比"学生举手提问"KW_k·输入向量匹配者:提供被匹配的特
- AI产品经理技术篇:从传统AI到生成式AI,解密大模型的核心概念
让我看看好学吗
人工智能产品经理学习深度学习自然语言处理
在人工智能技术飞速发展的今天,AI产品经理不仅需要理解业务逻辑,还需深入技术底层,把握从传统AI到生成式AI的演进脉络。传统AI以分类、预测和规则驱动为核心,而生成式AI则颠覆了这一范式,通过大模型实现内容创作、对话生成等创造性任务。这种转变背后,是参数规模、模型架构和训练方式的根本性革新。作为AI产品经理,理解大模型的核心概念至关重要。从“参数”的意义到“Token”的向量化,从Transfor
- 揭秘图像LLM:从像素到语言的智能转换
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython计算机视觉深度学习人工智能机器学习算法语言模型
图像LLM是怎么工作图像LLM(多模态大语言模型)的核心是将图像转化为语言模型能理解的“语言”,并与文本深度融合。以下结合CLIP、DALL-E、GPT-4V等主流模型,通过具体例子说明其工作机制:一、图像→特征向量:从像素到“密码”例子:识别“戴墨镜的猫”视觉编码器提取特征使用ResNet或ViT(VisionTransformer)作为图像编码器,将图片分解为局部像素块(如16x16像素)。每
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多