【医学+深度论文:F34】2018 CVPR Retinal Optic Disc Segmentation using Conditional Generative Adversarial

34

2018 CVPR

Retinal Optic Disc Segmentation using Conditional Generative Adversarial Network

dataset - introduce github
Grishti-GS1 2017 keras F21 复现 https://github.com/abhinav-iiit/fundus-image-segmentation
Grishti-GS1 2017 CVPR keras F21 https://github.com/seva100/optic-nerve-cnn
- pytorch retinal-cGAN https://github.com/shuangyueliao/retinal-cGAN

Method : 分割 OD
Dataset: DRISHTI GS1
     RIM-ONE
Architecture: cGAN
Results:

Dataset Accuracy Dice JACC Senstivity Specificity
DRISHTI GS1 0.98 0.97 0.96 0.98
RIM-ONE 0.98 0.98 0.93 0.98 0.99

Method

The Proposed cGAN network

  • cGANs is a deep learning network that can learn the statistical invariant features (texture, color etc.) of input image and segment the optic disc region.

  • generator
    learns the mapping from the input, a fundus image,to the output, a segmented image.

  • discriminator
    learns a loss function to train this mapping by comparing the ground-truth and the predicted output

  • the whole cGAN network
    optimizes a loss function that combines a conventional binary cross-entropy loss with an adversarial term.
    The adversarial term encourages the generator to produce output that cannot be distinguished from ground-truth ones.

【医学+深度论文:F34】2018 CVPR Retinal Optic Disc Segmentation using Conditional Generative Adversarial_第1张图片
【医学+深度论文:F34】2018 CVPR Retinal Optic Disc Segmentation using Conditional Generative Adversarial_第2张图片

generator

  • based on encoding and decoding layers
    LeakyRelu(slope 0.2)
    image 256×256
    【医学+深度论文:F34】2018 CVPR Retinal Optic Disc Segmentation using Conditional Generative Adversarial_第3张图片

discriminator

  • 5conv (3 × 3 stride 2)
    output 30×30 512
  • the concatenation of the retinal image and the segmentation mask as an input to be evaluated as real or fake
    在生成器的损失计算中包含对抗性 score 有助于增强网络分割的能力

train

epoch 200 , batch size 4 , Adam 0.0002

Result

Experience

  • 和 FCN、SegNet、U-Net 比较

  • 和 论文 F14 等 共三篇文章做比较

  • cGAN 效果最好,OD分割更接近地面真实情况,边界更精确。U-Net也提供了可接受的分割。在五种测试方法中,SegNet的分割效果最差。

【医学+深度论文:F34】2018 CVPR Retinal Optic Disc Segmentation using Conditional Generative Adversarial_第4张图片

【医学+深度论文:F34】2018 CVPR Retinal Optic Disc Segmentation using Conditional Generative Adversarial_第5张图片

Discussion

  • cGAN网络不需要大量的图像来训练
  • 由于最后的分割只在生成器网络中实现,因此在不增加任何复杂度的情况下,它可以获得很高的分割性能。
  • cGAN算法优于目前最先进的 OD 分割方法

你可能感兴趣的:(Medical)