- 人工智能与机器学习入门:基尼系数(Gini Index)和基于熵(Entropy)
基尼系数基于熵机器学习入门
在决策树应用一文中,在构建决策分类树应用决策算法时,介绍了基尼系数(GiniIndex)和基于熵(Entropy)两种算法。本文通过实例来更加深入的介绍一下这两个算法。仍然以简单的数据为例:id喜欢颜色是否有喉结身高性别1绿否165女2蓝是170男3粉否172女4绿是175男基尼系数分别对喜欢颜色是否有喉结求基尼系数如下:喜欢的颜色id喜欢颜色性别1绿女2蓝男3粉女4绿男对于姓别女分类而言,数据如
- 人工智能与机器学习入门:决策树应用
决策树机器学习入门
在人工智能与机器学习入门:使用Kaggle完成Titanic推断学习一文中,给出了使用Kaggle进行机器学习入门的方法,本文基于上文的需求。尝试使用决策树模型来训练数据,并进行test数据集的测试。什么是决策树决策树,简单来讲可以认为是一个大的ifelse判断树,有了决策树后,测试集中的数据便可以使用该决策树进行判断了。比如根据Titanic的训练数据构造了上次决策树后,便可以根据测试数据的性别
- AI 百炼成神:线性回归,预测房价
github_czy
AI百炼成神:100个项目玩转人工智能python开发语言
我们开始第一个项目——线性回归:预测房价。这是一个经典的机器学习入门项目,可以帮助你理解如何使用线性回归模型来预测连续的数值。第一个项目:线性回归预测房价项目目标学习线性回归的基本概念。使用历史房价数据建立一个预测模型。理解如何评估模型的性能。项目步骤准备数据集为了演示线性回归,我们将使用一个常见的房价数据集:波士顿房价数据集(BostonHousingDataset)。这个数据集包含了多个特征(
- 机器学习入门-读书摘要
不像程序员的程序媛
机器学习人工智能
先看了《深度学习入门:基于python的理论和实践》这本电子书,早上因为入迷还坐过站了。。因为里面的反向传播和链式法则特别难懂,又网上搜了相关内容进行进一步理解,参考的以下文章(个人认为都讲的都非常好):https://zhuanlan.zhihu.com/p/65472471https://zhuanlan.zhihu.com/p/635438713https://zhuanlan.zhihu.
- 【人工智能-初级】第20章 使用 Matplotlib 和 Seaborn 进行数据可视化
若北辰
人工智能信息可视化人工智能matplotlib
【人工智能-初级】系列专栏【人工智能-初级】第1章人工智能概述【人工智能-初级】第2章机器学习入门:从线性回归开始【人工智能-初级】第3章k-最近邻算法(KNN):分类和Python实现【人工智能-初级】第4章用Python实现逻辑回归:从数据到模型【人工智能-初级】第5章支持向量机(SVM):原理解析与代码实现【人工智能-初级】第6章决策树和随机森林:浅显易懂的介绍及Python实践【人工智能-
- 组队学习首次开放许愿啦!下个月想学什么,听你的
datawhale
原创DatawhaleDatawhaleDatawhale学习开源贡献:Datawhale团队许愿你想学习的课程组队学习新增许愿环节,每个人都可以在留言区写下你想学习的内容。许愿规则▶许愿的内容不能太广。举个栗子,不推荐大家直接许愿:「机器学习」,而是许愿:「机器学习入门概念讲解」,或者具体到某个算法:「线性回归的公式推导+代码实战」,这样便于我们在1个月内完成制作。▶不限制课程难度,只要是刚需就
- 机器学习入门——机器学习基本概念
四月是你的
机器学习
@机器学习什么是机器学习机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎简单来说机器学习就是机
- 【2025 ODA teigha .NET系列开发教程 第五章】给CAD实体添加附属数据XDATA,包括源码
三好学生~张旺
ODATeigha.NET开发教程.net
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档2025ODAteigha.NET系列开发教程系列文章目录AutoCADXData扩展数据开发指南什么是XData?XData的两种存储方式1.全局字典存储(XRecord)2.实体附加存储步骤1:注册应
- 机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
wyc9999ww
机器学习scikit-learnjupyter人工智能python
对于初学者来说,scikit-learn是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。通过使用scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。所以scikit-learn能轻松实现从数据预处理到模型训练和评估的完整流程。此外在推荐一个适合初学者的深度学习平台工具googleco
- 机器学习入门:机器学习的基本概念
Louis0687
姓名:高亦凡学号:19020100056学院:电子工程学院转载自:原文链接【嵌牛导读】机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。【嵌牛鼻子】机器学习【嵌牛提问】什么是机器学
- 【机器学习基础】正则化
为梦而生~
机器学习机器学习人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习欢迎订阅!后面的内容会越来越有意思~⭐特别提醒:针对机器学习,特别开始专栏:机器学习python实战欢迎订阅!本专栏针对机器学习基础专栏的理论知识,利用python代码进行实际展示,真正做到从基础到实战!往期推荐:【机器学习基础】机器学习入门(1)【机器学习基础】机器学习入门(2)【机器学习基础】机器学习的基本术语【机器学习基础】机器学习的模型评
- 机器学习入门--LSTM原理与实践
Dr.Cup
机器学习入门机器学习lstm人工智能
LSTM模型长短期记忆网络(LongShort-TermMemory,LSTM)是一种常用的循环神经网络(RNN)变体,特别擅长处理长序列数据和捕捉长期依赖关系。本文将介绍LSTM模型的数学原理、代码实现和实验结果,并使用pytorch和sklearn的数据集进行验证。数学原理遗忘门(ForgetGate)遗忘门的作用是决定前一时间步的细胞状态中哪些信息需要被遗忘。具体计算公式为:ft=σ(Wf⋅
- 机器学习入门--双向长短期记忆神经网络(BiLSTM)原理与实践
Dr.Cup
机器学习入门机器学习神经网络lstm
双向长短记忆网络(BiLSTM)BiLSTM(双向长短时记忆网络)是一种特殊的循环神经网络(RNN),它能够处理序列数据并保持长期记忆。与传统的RNN模型不同的是,BiLSTM同时考虑了过去和未来的信息,使得模型能够更好地捕捉序列数据中的上下文关系。在本文中,我们将详细介绍BiLSTM的数学原理、代码实现以及应用场景。数学原理LSTM(长短期记忆网络)是一种递归神经网络(RNN),通过引入门控机制
- 机器学习入门--循环神经网络原理与实践
Dr.Cup
机器学习入门机器学习rnn深度学习
循环神经网络循环神经网络(RNN)是一种在序列数据上表现出色的人工神经网络。相比于传统前馈神经网络,RNN更加适合处理时间序列数据,如音频信号、自然语言和股票价格等。本文将介绍RNN的基本数学原理、使用PyTorch和Scikit-Learn数据集实现的代码。数学原理RNN是一种带有循环结构的神经网络,其在处理序列数据时将前一次的输出作为当前输入的一部分。这使得RNN能够记住先前的状态和信息,并且
- 机器学习入门--门控循环单元(GRU)原理与实践
Dr.Cup
机器学习入门机器学习gru人工智能
GRU模型随着深度学习领域的快速发展,循环神经网络(RNN)已成为自然语言处理(NLP)等领域中常用的模型之一。但是,在RNN中,如果时间步数较大,会导致梯度消失或爆炸的问题,这影响了模型的训练效果。为了解决这个问题,研究人员提出了新的模型,其中GRU是其中的一种。本文将介绍GRU的数学原理、代码实现,并通过pytorch和sklearn的数据集进行试验,最后对该模型进行总结。数学原理GRU是一种
- 机器学习入门--多层感知机原理与实践
Dr.Cup
机器学习入门机器学习人工智能
神经网络与多层感知机神经网络是一种模仿生物神经系统结构和功能的计算模型。它由许多个节点(或称为神经元)组成,这些节点通过连接权重相互连接。神经网络的输入经过一系列的加权求和和激活函数变换后,得到输出结果。神经网络的训练过程主要包括前向传播和反向传播两个阶段。前向传播是指数据从输入层逐层传递到输出层的过程,每一层的节点都会根据输入值和连接权重计算输出值。反向传播是指通过计算损失函数对网络参数进行梯度
- 机器学习入门--BP神经网络原理与实践
Dr.Cup
机器学习入门机器学习神经网络人工智能
BP神经网络引言BP神经网络,即反向传播神经网络,是一种监督学习算法,用于多层前馈神经网络的训练。自从1986年由Rumelhart,Hinton和Williams提出以来,它已成为最流行的神经网络训练算法之一。BP算法的核心思想是通过计算损失函数相对于网络参数的梯度,然后利用这些梯度信息来更新网络的权重和偏置,从而最小化误差。数学原理BP算法的数学原理基于链式法则计算梯度。考虑一个简单的两层神经
- 机器学习入门--朴素贝叶斯原理与实践
Dr.Cup
机器学习入门机器学习概率论人工智能
朴素贝叶斯算法朴素贝叶斯是一种常用的分类算法,其基本思想是根据已有数据的特征和标签,学习出一个概率模型,并利用该模型对新样本进行分类。其优点在于简单快速、易于实现和解释,缺点在于对输入数据的分布做了严格的假设。具体来说,朴素贝叶斯分类器首先根据训练数据计算出每个类别的先验概率P©,即样本中每个类别占比。然后,对于给定的待分类样本,计算出它属于每个类别的条件概率P(X|C),其中X表示样本的特征向量
- 机器学习入门--奇异值分解原理与实践
Dr.Cup
机器学习入门机器学习人工智能
奇异值分解奇异值分解(SingularValueDecomposition,SVD)是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。奇异值分解数学原理奇异值分解是一种矩阵分解技术,可以将一个矩阵分解为三个部分的乘积。在SVD中,原始矩阵被分解为左奇异向量矩阵、奇异值矩阵和右奇异向量矩阵的乘积。具体来说,对于一个m
- 机器学习入门--主成分分析原理与实践
Dr.Cup
机器学习入门机器学习概率论人工智能
主成分分析主成分分析(PrincipalComponentAnalysis,简称PCA)是一种常用的降维技术和数据分析方法。它通过线性变换将原始高维数据映射到低维空间,从而提取出数据中最重要的特征。主成分分析的基本原理与数学推导基本原理PCA的主要思想是找到一个新的坐标系,将数据投影到这个坐标系上,使得投影后的数据具有最大的方差。这意味着在新的坐标系下,数据的信息尽可能地集中在少数几个维度上,而其
- 机器学习入门--逻辑回归与简单二分类数据实战
Dr.Cup
机器学习入门机器学习逻辑回归分类
逻辑回归在机器学习领域,逻辑回归是一个广泛应用于分类问题的算法。与线性回归不同,逻辑回归用于预测离散的类别标签,可以处理二分类和多分类问题。下面我们将介绍逻辑回归的基本原理和实现方式。原理逻辑回归的目标是找到一个函数g(z)g(z)g(z),将输入的特征向量xxx映射到概率值p(y=1∣x;w)p(y=1|x;w)p(y=1∣x;w),其中www是参数向量。我们可以使用sigmoid函数来实现这个
- 机器学习入门--支持向量机原理与实践
Dr.Cup
机器学习入门支持向量机机器学习算法
支持向量机模型支持向量机(SupportVectorMachine,SVM)是一种常用的监督学习算法,主要用于分类和回归问题。它的原理简单而强大,在许多实际应用中取得了很好的效果。原理支持向量机(SupportVectorMachine,SVM)是一种常用的机器学习算法,用于分类和回归问题。其原理是基于统计学习理论中的结构风险最小化原则。SVM的主要思想是将数据通过一个高维特征空间进行映射,使得在
- 机器学习入门--简单卷积神经网络原理与实践
Dr.Cup
机器学习入门机器学习cnn人工智能
深入理解卷积神经网络(CNN)引言卷积神经网络(ConvolutionalNeuralNetworks,CNN)是深度学习中的一种核心算法,广泛应用于图像识别、视频分析和自然语言处理等领域。CNN通过模拟人类视觉系统的工作原理,能够自动并有效地识别图像中的模式和特征。数学原理CNN主要由卷积层、激活层和池化层组成。其核心在于卷积层,它使用一系列可学习的滤波器来扫描输入数据。卷积操作卷积神经网络(C
- 机器学习入门之基础概念及线性回归
StarCoder_Yue
算法机器学习学习笔记机器学习线性回归正则化人工智能算法数学
任务目录什么是Machinelearning学习中心极限定理,学习正态分布,学习最大似然估计推导回归Lossfunction学习损失函数与凸函数之间的关系了解全局最优和局部最优学习导数,泰勒展开推导梯度下降公式写出梯度下降的代码学习L2-Norm,L1-Norm,L0-Norm推导正则化公式说明为什么用L1-Norm代替L0-Norm学习为什么只对w/Θ做限制,不对b做限制Question1:Wh
- 浏览器F12调试
知行合一。。。
测试技术功能测试
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录系列文章目录1浏览器F12开发者工具1.1F12开发者工具基本介绍1.2F12常规设置2标签页2.1Elements查看器2.2Network网络2.3Network抓包分析案例1:以登录百度账号
- ui转py
CN-JackZhang
qtpython开发语言
pyqt系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录pyqt系列文章目录前言一、ui转py二、入门教程1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都
- 机器学习入门-----sklearn
辣椒酱.
python机器学习sklearn人工智能
机器学习基础了解概念机器学习是人工智能的一个实现途径深度学习是机器学习的一个方法发展而来定义:从数据中自动分析获得模型,并利用模型对特征数据【数据集:特征值+目标值构成】进行预测算法数据集的目标值是类别的话叫做分类问题;目标值是连续的数值的话叫做回归问题;统称监督学习;另一类是无监督学习,这一类的数据集没有目标值,典型:聚类;做什么可以进行传统预测、图像识别、自然语言处理传统预测店铺销量预测、量化
- 模式识别 | PRML概览
ZIYUE WU
MachineLearning
PRML全书概览PRML全称PatternRecognitionandMachineLearning,个人认为这是机器学习领域中最好的书籍之一,全书的风格非常Bayesian,作者试图在贝叶斯框架下解释每一种机器学习模型。阅读起来有一定难度,不适合作为机器学习入门教材。然而这本书提供的贝叶斯视角有助于我们更为立体全面理解一些经典模型。全书分为十四个章节,这里我尽可能简要概述每个章节的主要内容,如果
- Windows Server 2019 Web服务器搭建
可惜已不在
windows运维服务器
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录WindowsServer2003Web服务器搭建WindowsServer2003FTP服务器搭建WindowsServer2003DNS服务器搭建WindowsServer2003DHCP服务
- 一、容器化技术-docker初识
天灾领主加尔鲁什
原生云容器docker
系列文章目录提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章Python机器学习入门之pandas的使用目录前言一、docker是什么?二、环境约定三、环境安装四、安装centos7五、操作实例六、安装docker常用命令前言去了新公司线上应用部署环境由传统服务器直接部署变为使用docker,并且感觉以前部署应用方式不够优雅,面对微服务体系资源利用率不够高,所以学习do
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s