参考文章:http://www.cnblogs.com/daihengchen/p/5754383.html
参考文章:http://blog.csdn.net/zhyh1435589631/article/details/54236643
train
和 predict
即可得到想要的预测数据compute_distances_two_loops
,compute_distances_one_loop
,compute_distances_no_loops
分别是用来实现需要预测的数据集 X
和 原始记录的训练集 self.X_train
之间的距离关系, 并通过predict_labels
进行KNN预测class KNearestNeighbor(object):
""" a kNN classifier with L2 distance """
def __init__(self):
pass
def train(self, X, y):
...
def predict(self, X, k=1, num_loops=0):
...
def compute_distances_two_loops(self, X):
...
def compute_distances_one_loop(self, X):
...
def compute_distances_no_loops(self, X):
...
def getNormMatrix(self, x, lines_num):
...
def predict_labels(self, dists, k=1):
...
这个函数主要通过两层 for 循环对计算测试集与训练集数据之间的欧式距离
def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data.
Inputs:
- X: A numpy array of shape (num_test, D) containing test data.
Returns:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
is the Euclidean distance between the ith test point and the jth training
point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j]. You should #
# not use a loop over dimension. #
#####################################################################
dists[i][j]
=
np.sqrt(np.
sum
(np.square(
self
.X_train[j,:]
-
X[i,:])))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists
本质上这里填入的代码和 上一节中的是一致的, 只是多了一个 axis = 1
指定方向
def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i,:]
=
np.sqrt(np.
sum
(np.square(
self
.X_train
-
X[i,:]),axis
=
1
))
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists
def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# #
# You should implement this function using only basic array operations; #
# in particular you should not use functions from scipy. #
# #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
sq1=np.sum(np.square(X),axis=1)
sq2=np.sum(np.square(self.X_train),axis=1)
s=np.dot(X,self.X_train.T)
dist = np.sqrt(sq1+sq2.T-2*s)
#dists = np.sqrt(self.getNormMatrix(X, num_train).T + self.getNormMatrix(self.X_train, num_test) - 2 * np.dot(X, self.X_train.T))
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists
def getNormMatrix(self, x, lines_num):
"""
Get a lines_num x size(x, 1) matrix
"""
return np.ones((lines_num, 1)) * np.sum(np.square(x), axis = 1)
根据计算得到的距离关系, 挑选 K 个数据组成选民, 进行党派选举
def predict_labels(self, dists, k=1):
"""
Given a matrix of distances between test points and training points,
predict a label for each test point.
Inputs:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
gives the distance betwen the ith test point and the jth training point.
Returns:
- y: A numpy array of shape (num_test,) containing predicted labels for the
test data, where y[i] is the predicted label for the test point X[i].
"""
num_test = dists.shape[0]
y_pred = np.zeros(num_test)
for i in xrange(num_test):
# A list of length k storing the labels of the k nearest neighbors to
# the ith test point.
closest_y = []
#########################################################################
# TODO: #
# Use the distance matrix to find the k nearest neighbors of the ith #
# testing point, and use self.y_train to find the labels of these #
# neighbors. Store these labels in closest_y. #
# Hint: Look up the function numpy.argsort. #
#########################################################################
kids = np.argsort(dists[i])
closest_y = self.y_train[kids[:k]]
#########################################################################
# TODO: #
# Now that you have found the labels of the k nearest neighbors, you #
# need to find the most common label in the list closest_y of labels. #
# Store this label in y_pred[i]. Break ties by choosing the smaller #
# label. #
#########################################################################
y_pred[i] = np.argmax(np.bincount(closest_y))
#########################################################################
# END OF YOUR CODE #
#########################################################################
return y_pred
num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]
X_train_folds = []
y_train_folds = []
################################################################################
# TODO: #
# Split up the training data into folds. After splitting, X_train_folds and #
# y_train_folds should each be lists of length num_folds, where #
# y_train_folds[i] is the label vector for the points in X_train_folds[i]. #
# Hint: Look up the numpy array_split function. #
################################################################################
X_train_folds = np.array_split(X_train, num_folds)
y_train_folds = np.array_split(y_train, num_folds)
################################################################################
# END OF YOUR CODE #
################################################################################
# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}
################################################################################
# TODO: #
# Perform k-fold cross validation to find the best value of k. For each #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times, #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all #
# values of k in the k_to_accuracies dictionary. #
################################################################################
for k in k_choices:
k_to_accuracies[k] = np.zeros(num_folds)
for i in range(num_folds):
Xtr = np.array(X_train_folds[:i] + X_train_folds[i+1:])
ytr = np.array(y_train_folds[:i] + y_train_folds[i+1:])
Xte = np.array(X_train_folds[i])
yte = np.array(y_train_folds[i])
Xtr = np.reshape(Xtr, (X_train.shape[0] * 4 / 5, -1))
ytr = np.reshape(ytr, (y_train.shape[0] * 4 / 5, -1))
Xte = np.reshape(Xte, (X_train.shape[0] / 5, -1))
yte = np.reshape(yte, (y_train.shape[0] / 5, -1))
classifier.train(Xtr, ytr)
yte_pred = classifier.predict(Xte, k)
yte_pred = np.reshape(yte_pred, (yte_pred.shape[0], -1))
num_correct = np.sum(yte_pred == yte)
accuracy = float(num_correct) / len(yte)
k_to_accuracies[k][i] = accuracy
################################################################################
# END OF YOUR CODE #
################################################################################
# Print out the computed accuracies
for k in sorted(k_to_accuracies):
for accuracy in k_to_accuracies[k]:
print 'k = %d, accuracy = %f' % (k, accuracy)