CS231n-assignment1

参考文章:http://www.cnblogs.com/daihengchen/p/5754383.html


KNN

参考文章:http://blog.csdn.net/zhyh1435589631/article/details/54236643

knn 本质实现部分 代码分析

2.2.3.1 KNearestNeighbor 类整体分析

  1. 本质上, 这是一个类, 有多个成员函数构成, 用户调用的时候, 只需要调用 train 和 predict即可得到想要的预测数据
  2. 其中, compute_distances_two_loops,compute_distances_one_loop,compute_distances_no_loops分别是用来实现需要预测的数据集 X 和 原始记录的训练集 self.X_train之间的距离关系, 并通过predict_labels 进行KNN预测
class KNearestNeighbor(object):
  """ a kNN classifier with L2 distance """

  def __init__(self):
    pass

  def train(self, X, y):
    ...

  def predict(self, X, k=1, num_loops=0):
    ...

  def compute_distances_two_loops(self, X):
    ...

  def compute_distances_one_loop(self, X):
    ...

  def compute_distances_no_loops(self, X):
    ...

  def getNormMatrix(self, x, lines_num):
    ... 

  def predict_labels(self, dists, k=1):
    ...
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

2.2.3.2 compute_distances_two_loops

这个函数主要通过两层 for 循环对计算测试集与训练集数据之间的欧式距离

d2(I1,I2)=p(Ip1Ip2)2

def compute_distances_two_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a nested loop over both the training data and the 
    test data.

    Inputs:
    - X: A numpy array of shape (num_test, D) containing test data.

    Returns:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      is the Euclidean distance between the ith test point and the jth training
      point.
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in xrange(num_test):
      for j in xrange(num_train):
        #####################################################################
        # TODO:                                                             #
        # Compute the l2 distance between the ith test point and the jth    #
        # training point, and store the result in dists[i, j]. You should   #
        # not use a loop over dimension.                                    #
        #####################################################################
         dists[i][j] = np.sqrt(np.sum(np.square(self.X_train[j,:] - X[i,:])))
        #####################################################################
        #                       END OF YOUR CODE                            #
        #####################################################################
    return dists
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

2.2.3.3 compute_distances_one_loop

本质上这里填入的代码和 上一节中的是一致的, 只是多了一个 axis = 1 指定方向

def compute_distances_one_loop(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using a single loop over the test data.

    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train))
    for i in xrange(num_test):
      #######################################################################
      # TODO:                                                               #
      # Compute the l2 distance between the ith test point and all training #
      # points, and store the result in dists[i, :].                        #
      #######################################################################
      dists[i,:] = np.sqrt(np.sum(np.square(self.X_train-X[i,:]),axis = 1)) 
      #######################################################################
      #                         END OF YOUR CODE                            #
      #######################################################################
    return dists
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

2.2.3.4 compute_distances_no_loops

  1. 这部分公式虽然短小, 但是需要一定的数学功底, 参考文章:http://blog.csdn.net/geekmanong/article/details/51524402
  2. 我们记测试集矩阵 为  P  大小为  M×D  , 训练集矩阵 为  C  大小为  N×D
  3. 记  Pi  是 P  的第  i  行, 同理  Cj  是  C  的 第  j  行: 
    Pi=[Pi1Pi2PiD]Cj=[Cj1Cj2CjD]
  4. 我们先来计算一下  Pi  和  Cj  之间的距离 
    d(Pi,Cj)=(Pi1Cj1)2+(Pi2Cj2)2++(PiDCjD)2=(P2i1+P2i2++P2iD)+(C2j1+C2j2++C2jD)2(Pi1Cj1+Pi2Cj2++PiDCjD)=||Pi||2+||Cj||22PiCj
  5. 我们可以推广得到,结果矩阵的每行元素为: 
    Res(i)=(||Pi||2||Pi||2||Pi||2)+(||C1||2||C2||2||CN||2)2Pi(C1C2CN)=(||Pi||2||Pi||2||Pi||2)+(||C1||2||C2||2||CN||2)2PiC
  6. 继而, 结果矩阵为: 
    Res=||P1||2||P2||2||PM||2||P1||2||P2||2||PM||2||P1||2||P2||2||PM||2+||C1||2||C1||2||C1||2||C2||2||C2||2||C2||2||CN||2||CN||2||CN||22PC=||P1||2||P2||2||PM||2M×1(111)1×N+111M×1(||C1||2||C2||2||CN||2)1×N2PM×DCN×D
  7. 转换为python 代码如下:
 def compute_distances_no_loops(self, X):
    """
    Compute the distance between each test point in X and each training point
    in self.X_train using no explicit loops.

    Input / Output: Same as compute_distances_two_loops
    """
    num_test = X.shape[0]
    num_train = self.X_train.shape[0]
    dists = np.zeros((num_test, num_train)) 
    #########################################################################
    # TODO:                                                                 #
    # Compute the l2 distance between all test points and all training      #
    # points without using any explicit loops, and store the result in      #
    # dists.                                                                #
    #                                                                       #
    # You should implement this function using only basic array operations; #
    # in particular you should not use functions from scipy.                #
    #                                                                       #
    # HINT: Try to formulate the l2 distance using matrix multiplication    #
    #       and two broadcast sums.                                         #
    #########################################################################
    sq1=np.sum(np.square(X),axis=1)
   sq2=np.sum(np.square(self.X_train),axis=1)
   s=np.dot(X,self.X_train.T)
   dist = np.sqrt(sq1+sq2.T-2*s)    #dists = np.sqrt(self.getNormMatrix(X, num_train).T + self.getNormMatrix(self.X_train, num_test) - 2 * np.dot(X, self.X_train.T))
    #########################################################################
    #                         END OF YOUR CODE                              #
    #########################################################################
    return dists

  def getNormMatrix(self, x, lines_num):
    """
    Get a lines_num x size(x, 1) matrix
    """ 
    return np.ones((lines_num, 1)) * np.sum(np.square(x), axis = 1) 
   
   
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33

2.2.3.5 predict_labels

根据计算得到的距离关系, 挑选 K 个数据组成选民, 进行党派选举

def predict_labels(self, dists, k=1):
    """
    Given a matrix of distances between test points and training points,
    predict a label for each test point.

    Inputs:
    - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
      gives the distance betwen the ith test point and the jth training point.

    Returns:
    - y: A numpy array of shape (num_test,) containing predicted labels for the
      test data, where y[i] is the predicted label for the test point X[i].  
    """
    num_test = dists.shape[0]
    y_pred = np.zeros(num_test)
    for i in xrange(num_test):
      # A list of length k storing the labels of the k nearest neighbors to
      # the ith test point.
      closest_y = []
      #########################################################################
      # TODO:                                                                 #
      # Use the distance matrix to find the k nearest neighbors of the ith    #
      # testing point, and use self.y_train to find the labels of these       #
      # neighbors. Store these labels in closest_y.                           #
      # Hint: Look up the function numpy.argsort.                             #
      #########################################################################
      kids = np.argsort(dists[i])
      closest_y = self.y_train[kids[:k]]
      #########################################################################
      # TODO:                                                                 #
      # Now that you have found the labels of the k nearest neighbors, you    #
      # need to find the most common label in the list closest_y of labels.   #
      # Store this label in y_pred[i]. Break ties by choosing the smaller     #
      # label.                                                                #
      #########################################################################
      y_pred[i] = np.argmax(np.bincount(closest_y))
      #########################################################################
      #                           END OF YOUR CODE                            # 
      #########################################################################

    return y_pred

2.2.4 cross-validation 代码分析

  1. 交叉验证实际上是将数据的训练集进行拆分, 分成多个组, 构成多个训练和测试集, 来筛选较好的超参数
  2. 如图所示, 可以分为 5组数据, (分别将 fold 1, 2 .. 5 作为验证集, 将剩余的数据作为训练集, 训练得到超参数)

2.2.4.1 筛选不同的k

num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]

X_train_folds = []
y_train_folds = []
################################################################################
# TODO:                                                                        #
# Split up the training data into folds. After splitting, X_train_folds and    #
# y_train_folds should each be lists of length num_folds, where                #
# y_train_folds[i] is the label vector for the points in X_train_folds[i].     #
# Hint: Look up the numpy array_split function.                                #
################################################################################
X_train_folds = np.array_split(X_train, num_folds)
y_train_folds = np.array_split(y_train, num_folds)


################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}


################################################################################
# TODO:                                                                        #
# Perform k-fold cross validation to find the best value of k. For each        #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times,   #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all     #
# values of k in the k_to_accuracies dictionary.                               #
################################################################################
for k in k_choices:
    k_to_accuracies[k] = np.zeros(num_folds)
    for i in range(num_folds):
        Xtr = np.array(X_train_folds[:i] + X_train_folds[i+1:])
        ytr = np.array(y_train_folds[:i] + y_train_folds[i+1:])
        Xte = np.array(X_train_folds[i])
        yte = np.array(y_train_folds[i])     

        Xtr = np.reshape(Xtr, (X_train.shape[0] * 4 / 5, -1))
        ytr = np.reshape(ytr, (y_train.shape[0] * 4 / 5, -1))
        Xte = np.reshape(Xte, (X_train.shape[0] / 5, -1))
        yte = np.reshape(yte, (y_train.shape[0] / 5, -1))

        classifier.train(Xtr, ytr)
        yte_pred = classifier.predict(Xte, k)
        yte_pred = np.reshape(yte_pred, (yte_pred.shape[0], -1))
        num_correct = np.sum(yte_pred == yte)
        accuracy = float(num_correct) / len(yte)
        k_to_accuracies[k][i] = accuracy

################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print 'k = %d, accuracy = %f' % (k, accuracy)

你可能感兴趣的:(CS231n-assignment1)