darknet pytorch-yolov3解决梯度爆炸

文章目录

  • darknet/pytorch-yolov3解决梯度爆炸
    • 现象与原因:
    • 解决思路:
      • pytorch-yolov3框架
        • 限制函数
        • 如何使用
      • darknet-yolov3框架
        • 限制函数
        • 如何应用

darknet/pytorch-yolov3解决梯度爆炸

现象与原因:

现象:

梯度爆炸是深度学习中十分常见的现象,有时会导致寻优过程不收敛,或者算出来的结果干脆直接溢出,例如在训练过程中出现大面积的nan或者-nan,使前向传播失效,迭代无法继续正常进行。

原因:

1.权重初始化不合理:

由于初始化权值过大,前面层会比后面层变化的更快,就会导致权值越来越大,梯度爆炸的现象就发生了。网络层之间的梯度绝对值大于 1.0,重复相乘导致的指数级增长会产生梯度爆炸

2.训练任务难及样本质量低:

导致训练前期,loss过大致使梯度爆炸。

3.网络结构设计不合理或者训练参数设置不合理:

网络过深导致梯度累积严重,batch设置过大导致学习难度增加。

解决思路:

针对以上原因主要有以下三种解决思路:

1.修改模型初始化策略以及模型训练参数

参考:《yolov3模型初始化》https://blog.csdn.net/qq_33270279/article/details/103029130

2.加载预训练模型

因为梯度爆炸多发生在训练前期,模型权重混乱的状态。所以在预训练模型上进行微调训练会解决梯度爆炸问题。

3.设置梯度限制策略

主要详细介绍第三种思路-设置梯度限制策略:

pytorch-yolov3框架

限制函数

def clip_grad_norm_(parameters, max_norm, norm_type=2):
    r"""Clips gradient norm of an iterable of parameters.

    The norm is computed over all gradients together, as if they were
    concatenated into a single vector. Gradients are modified in-place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.    #范数类型,默认为L2

    Returns:
        Total norm of the parameters (viewed as a single vector).
    """
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = list(filter(lambda p: p.grad is not None, parameters))
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    if norm_type == inf:
        total_norm = max(p.grad.data.abs().max() for p in parameters)#取绝对值的最大值
    else:
        total_norm = 0
        for p in parameters:
            param_norm = p.grad.data.norm(norm_type)
            total_norm += param_norm.item() ** norm_type
        total_norm = total_norm ** (1. / norm_type)#取(grad**norm_type)**(1/norm_type)
    clip_coef = max_norm / (total_norm + 1e-6)
    if clip_coef < 1:
        for p in parameters:
            p.grad.data.mul_(clip_coef)#按比例进行缩放
    return total_norm
def clip_grad_value_(parameters, clip_value):
    r"""Clips gradient of an iterable of parameters at specified value.

    Gradients are modified in-place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        clip_value (float or int): maximum allowed value of the gradients
            The gradients are clipped in the range [-clip_value, clip_value]
    """
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    clip_value = float(clip_value)
    for p in filter(lambda p: p.grad is not None, parameters):
        p.grad.data.clamp_(min=-clip_value, max=clip_value)

如何使用

...
    loss, outputs = model(imgs, targets)  # 正向传播 
    loss.backward()  # 反向传播          
    nn.utils.clip_grad_norm_(model.parameters(), 0.5) 
    optimizer.step()  # 更新迭代 
    optimizer.zero_grad()  # 将module中的所有模型参数的梯度初始化为0
...

darknet-yolov3框架

限制函数

以gpu训练讲解:src/blas_kernals.cu

//可以用来作为梯度限制的函数,但又不限于限制梯度,比如限制loss等。如果下边的这些函数不满足需求,可以自己先写一个。
__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX,  float *Y, int OFFY, int INCY)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) Y[OFFY+i*INCY] += ALPHA*X[OFFX+i*INCX];
}

__global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) Y[i*INCY] = pow(X[i*INCX], ALPHA);
}

__global__ void const_kernel(int N, float ALPHA, float *X, int INCX)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) X[i*INCX] = ALPHA;
}

__global__ void constrain_kernel(int N, float ALPHA, float *X, int INCX)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) X[i*INCX] = fminf(ALPHA, fmaxf(-ALPHA, X[i*INCX]));
}

__global__ void supp_kernel(int N, float ALPHA, float *X, int INCX)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) {
        if((X[i*INCX] * X[i*INCX]) < (ALPHA * ALPHA)) X[i*INCX] = 0;
    }
}

__global__ void add_kernel(int N, float ALPHA, float *X, int INCX)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) X[i*INCX] += ALPHA;
}

__global__ void scal_kernel(int N, float ALPHA, float *X, int INCX)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) X[i*INCX] *= ALPHA;
}

__global__ void fill_kernel(int N, float ALPHA, float *X, int INCX)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) X[i*INCX] = ALPHA;
}

__global__ void copy_kernel(int N,  float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) Y[i*INCY + OFFY] = X[i*INCX + OFFX];
}

__global__ void mul_kernel(int N, float *X, int INCX, float *Y, int INCY)
{
    int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
    if(i < N) Y[i*INCY] *= X[i*INCX];
}

如何应用

以卷积层为例进行讲解,src/convolutional_kernels.cu

void backward_convolutional_layer_gpu(convolutional_layer l, network net)
{
    if(l.smooth){
        smooth_layer(l, 5, l.smooth);
    }
    constrain_gpu(l.outputs*l.batch, 1, l.delta_gpu, 1);//缩放因子为1;并限制在-1,1的范围内
    gradient_array_gpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
...
}

你可能感兴趣的:(深度学习知识,深度学习yolov3)