*1 什么是Elasticsearch
1、Elasticsearch的功能
分布式,搜索,数据分析
elasticsearch,基于lucene,隐藏复杂性,提供简单易用的restful api接口、java api接口(还有其他语言的api接口)
(1)分布式的文档存储引擎
(2)分布式的搜索引擎和分析引擎
(3)分布式,支持PB级数据
2、elasticsearch的核心概念
(1)Near Realtime(NRT):近实时,两个意思,从写入数据到数据可以被搜索到有一个小延迟(大概1秒);基于es执行搜索和分析可以达到秒级
(2)Cluster:集群,包含多个节点,每个节点属于哪个集群是通过一个配置(集群名称,默认是elasticsearch)来决定的,对于中小型应用来说,刚开始一个集群就一个节点很正常
(3)Node:节点,集群中的一个节点,节点也有一个名称(默认是随机分配的),节点名称很重要(在执行运维管理操作的时候),默认节点会去加入一个名称为“elasticsearch”的集群,如果直接启动一堆节点,那么它们会自动组成一个elasticsearch集群,当然一个节点也可以组成一个elasticsearch集群
(4)Document&field:文档,es中的最小数据单元,一个document可以是一条客户数据,一条商品分类数据,一条订单数据,通常用JSON数据结构表示,每个index下的type中,都可以去存储多个document。一个document里面有多个field,每个field就是一个数据字段。
product document
{
“product_id”: “1”,
“product_name”: “高露洁牙膏”,
“product_desc”: “高效美白”,
“category_id”: “2”,
“category_name”: “日化用品”
}
(5)Index:索引,包含一堆有相似结构的文档数据,比如可以有一个客户索引,商品分类索引,订单索引,索引有一个名称。一个index包含很多document,一个index就代表了一类类似的或者相同的document。比如说建立一个product index,商品索引,里面可能就存放了所有的商品数据,所有的商品document。
(6)Type:类型,每个索引里都可以有一个或多个type,type是index中的一个逻辑数据分类,一个type下的document,都有相同的field,比如博客系统,有一个索引,可以定义用户数据type,博客数据type,评论数据type。
商品index,里面存放了所有的商品数据(商品document)
index: 商品
type:日化商品type,电器商品type,生鲜商品type
日化商品type:product_id,product_name,product_desc,category_id,category_name
电器商品type:product_id,product_name,product_desc,category_id,category_name,service_period
生鲜商品type:product_id,product_name,product_desc,category_id,category_name,eat_period
每一个type里面,都会包含一堆document(一条数据就是一个document)
商品index - 商品类型 type -商品数据document(属性field)
(7)shard:单台机器无法存储大量数据,es可以将一个索引中的数据切分为多个shard,分布在多台服务器上存储。有了shard就可以横向扩展,存储更多数据,让搜索和分析等操作分布到多台服务器上去执行,提升吞吐量和性能。每个shard都是一个lucene index。
(8)replica:任何一个服务器随时可能故障或宕机,此时shard可能就会丢失,因此可以为每个shard创建多个replica副本。replica可以在shard故障时提供备用服务,保证数据不丢失,多个replica还可以提升搜索操作的吞吐量和性能。primary shard(建立索引时一次设置,不能修改,默认5个),replica shard(随时修改数量,默认1个),默认每个索引10个shard,5个primary shard,5个replica shard,最小的高可用配置,是2台服务器。
3、elasticsearch核心概念 vs. 数据库核心概念
Elasticsearch 数据库
Document 行
Type 表
Index 库
命令
(1)快速查看集群健康状态
GET _/cat/health?v
status : green yellow red
green: 每个索引的primary shard和replica shard都是active状态的
yellow: 每个索引的primary shard都是active状态的,但是部分replica shard不是,处于不可用
red:不是所有primary shard都是active状态的,部分索引数据丢失
(2)快速查看集群中有哪些索引
GET /_cat/indices?v
(3)简单的索引操作
创建索引:PUT /test_index?pretty
删除索引:DELETE /test_index?pretty
(1)新增商品:新增文档,建立索引
PUT /index/type/id{
“json数据”
}
例如
PUT /ecommerce/product/1
{
“name” : “gaolujie yagao”,
“desc” : “gaoxiao meibai”,
“price” : 30,
“producer” : “gaolujie producer”,
“tags”: [ “meibai”, “fangzhu” ]
}
新增成功返回
{
“_index”: “ecommerce”,索引名称
“_type”: “product”,类型
“_id”: “1”,
“_version”: 1, 版本号涉及es乐观锁并发策略
“result”: “created”,
“_shards”: {
“total”: 2, 数据分primary和relica主从都一个
“successful”: 1, 只有主节点 没开从节点 所以1个
“failed”: 0
},
(2)查询商品:检索文档
GET /index/type/id
(3)修改商品:替换文档
PUT /ecommerce/product/1
{
“name” : “jiaqiangban gaolujie yagao”,
“desc” : “gaoxiao meibai”,
“price” : 30,
“producer” : “gaolujie producer”,
“tags”: [ “meibai”, “fangzhu” ]
}
替换方式有一个不好,即使必须带上所有的field,才能去进行信息的修改
不然会有其中一些field属性丢失
(4)修改商品:更新文档
POST /ecommerce/product/1/_update
{
“doc”: {
“name”: “jiaqiangban gaolujie yagao”
}
}
只修改一个field
(5)删除商品:删除文档
DELETE /ecommerce/product/1
1 query string search 搜索全部
get /ecommerce/product/_search /索引名/type名/_search
took:耗费了几毫秒
timed_out:是否超时,这里是没有
_shards:数据拆成了5个分片,所以对于搜索请求,会打到所有的primary shard(或者是它的某个replica shard也可以)
hits.total:查询结果的数量,3个document
hits.max_score:score的含义,就是document对于一个search的相关度的匹配分数,越相关,就越匹配,分数也高
hits.hits:包含了匹配搜索的document的详细数据
{
“took”: 2,
“timed_out”: false,
“_shards”: {
“total”: 5,
“successful”: 5,
“failed”: 0
},
“hits”: {
“total”: 3,
“max_score”: 1,
“hits”: [
{
“_index”: “ecommerce”,
“_type”: “product”,
“_id”: “2”,
“_score”: 1,
“_source”: {
“name”: “jiajieshi yagao”,
“desc”: “youxiao fangzhu”,
“price”: 25,
“producer”: “jiajieshi producer”,
“tags”: [
“fangzhu”
]
}
},
搜索商品名称中包含yagao的商品,而且按照售价降序排序:GET /ecommerce/product/_search?q=name:yagao&sort=price:desc
但是如果查询请求很复杂,是很难去构建的
在生产环境中,几乎很少使用query string search
2 query DSL
DSL:Domain Specified Language,特定领域的语言
http request body:请求体,可以用json的格式来构建查询语法,比较方便,可以构建各种复杂的语法,比query string search肯定强大多了
分页查询商品,总共3条商品,假设每页就显示1条商品,现在显示第2页,所以就查出来第2个商品
GET /ecommerce/product/_search
{
“query”: { “match_all”: {} },
“from”: 1,
“size”: 1
}
指定要查询出来商品的名称和价格就可以
GET /ecommerce/product/_search
{
“query”: { “match_all”: {} },
“_source”: [“name”, “price”]
}
3、query filter
搜索商品名称包含yagao,而且售价大于25元的商品
GET /ecommerce/product/_search
{
“query” : {
“bool” : {
//必须匹配 “must” : {
“match” : {
“name” : “yagao”
}
},
“filter” : {
“range” : {
“price” : { “gt” : 25 }
}
}
}
}
}
4、full-text search(全文检索)
GET /ecommerce/product/_search
{
“query” : {
“match” : {
“producer” : “yagao producer”
}
}
}
**
5、phrase search(短语搜索)
跟全文检索相对应,相反,全文检索会将输入的搜索串拆解开来,去倒排索引里面去一一匹配,只要能匹配上任意一个拆解后的单词,就可以作为结果返回
phrase search,要求输入的搜索串,必须在指定的字段文本中,完全包含一模一样的,才可以算匹配,才能作为结果返回
GET /ecommerce/product/_search
{
“query” : {
“match_phrase” : {
“producer” : “yagao producer”
}
}
}
6、highlight search(高亮搜索结果)
GET /ecommerce/product/_search
{
“query” : {
“match” : {
“producer” : “producer”
}
},
“highlight”: {
“fields” : {
“producer” : {}
}
}
}
第一个分析需求:计算每个tag下的商品数量
GET /ecommerce/product/_search
{
聚合"aggs": {
聚合名"group_by_tags": {
按照指定field进行分组 “terms”: { “field”: “tags” }
}
}
}
将文本field的fielddata属性设置为true
PUT /ecommerce/_mapping/product
{
“properties”: {
“tags”: {
“type”: “text”,
“fielddata”: true
}
}
}
第二个聚合分析的需求:对名称中包含yagao的商品,计算每个tag下的商品数量
GET /ecommerce/product/_search
{
“size”: 0,
“query”: {
“match”: {
“name”: “yagao”
}
},
“aggs”: {
“all_tags”: {
“terms”: {
“field”: “tags”
}
}
}
}
第三个聚合分析的需求:先分组,再算每组的平均值,计算每个tag下的商品的平均价格
GET /ecommerce/product/_search
{
“size”: 0,
“aggs” : {
“group_by_tags” : {
“terms” : { “field” : “tags” },
“aggs” : {
“avg_price” : {
“avg” : { “field” : “price” }
}
}
}
}
}
第四个数据分析需求:计算每个tag下的商品的平均价格,并且按照平均价格降序排序
GET /ecommerce/product/_search
{
“size”: 0,
“aggs” : {
“all_tags” : {
“terms” : { “field” : “tags”, “order”: { “avg_price”: “desc” } },
“aggs” : {
“avg_price” : {
“avg” : { “field” : “price” }
}
}
}
}
}
第五个数据分析需求:按照指定的价格范围区间进行分组,然后在每组内再按照tag进行分组,最后再计算每组的平均价格
GET /ecommerce/product/_search
{
“size”: 0,
“aggs”: {
“group_by_price”: {
“range”: {
“field”: “price”,
“ranges”: [
{
“from”: 0,
“to”: 20
},
{
“from”: 20,
“to”: 40
},
{
“from”: 40,
“to”: 50
}
]
},
“aggs”: {
“group_by_tags”: {
“terms”: {
“field”: “tags”
},
“aggs”: {
“average_price”: {
“avg”: {
“field”: “price”
}
}
}
}
}
}
}
}