- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 概率论与数理统计
ZhuBin365
人工智能概率论自动化人工智能机器学习深度学习
概率论部分1.随机事件与概率样本空间与随机事件:样本空间是随机试验所有可能结果的集合,通常用Ω表示。随机事件是样本空间的子集,表示随机试验的某些可能结果的集合。概率的公理化定义:概率是定义在事件集合上的函数P,满足三条公理:①非负性:P(A)≥0;②规范性:P(Ω)=1;③可列可加性:若事件A₁,A₂,...互不相容,则P(A₁∪A₂∪...)=P(A₁)+P(A₂)+...条件概率与全概率公式:
- 第十三届蓝桥杯大赛软件赛决赛C/C++ 大学 B 组
Kent_J_Truman
蓝桥杯蓝桥杯
A【2022——暴力DP/优雅背包】-CSDN博客B【钟表——类日期问题】-CSDN博客C【卡牌——二分】-CSDN博客D【最大数字——DFS】-CSDN博客E【出差——Dijkstra】-CSDN博客F【费用报销——01背包】-CSDN博客G【故障——条件概率】-CSDN博客H【机房——LCA】-CSDN博客I【齿轮——优化(预处理,去重,哈希)】-CSDN博客J【搬砖——经典带贪心01背包(背
- 【故障——条件概率】
Kent_J_Truman
蓝桥杯算法
题目描述太不清晰代码#includeusingnamespacestd;usingdb=double;inta,b,k;//a1e-6)returnp>t.p;returnians;intmain(){scanf("%d%d",&a,&b);for(inti=1;i<=a;i++)scanf("%d",pa+i);for(inti=1;i<=a;i++)for(intj=1;j<=b;j++)sc
- 概率论——5 事件的独立性
黑曼巴、。;
概率论
文章目录事件独立性描述性定义数学定义相关定理多事件独立性事件独立性描述性定义设A,BA,BA,B为两个事件,如果其中任何一个事件发生的概率不受另一个事件发生与否的影响,则称事件AAA与BBB相互独立。数学定义数学定义其实可以由条件概率推导得到,当事件AAA与BBB独立时,BBB在AAA的条件下发生的概率应该等于P(B)P(B)P(B),反之亦然,则可以得到下面的等式:P(B∣A)=P(AB)P(A
- 【概率论】多维随机变量及其分布
return bool(1)
概率论概率论学习
文章目录二维随机变量一、二维随机变量的定义二、分布函数的定义三、分布函数的性质1.单调不减2.规范性3.右连续4.非负性四、二维离散型随机变量1.定义2.性质3.联合分布律五、二维连续性随机变量1.定义2.性质3.求法边缘分布一、定义1.边缘分布函数2.边缘分布律3.边缘概率密度条件分布一、条件分布律的定义二、条件概率密度的定义三、两种重要的二维连续性随机变量1.均匀分布2.二维正态分布四、随机变
- 困惑度的估计
转码的小石
语言模型
固定长度模型的困惑度(Perplexity,PPL)困惑度(PPL)是评估语言模型性能的常用指标。需要注意的是,这个指标专门适用于经典的语言模型(有时称为自回归模型或因果语言模型),而对于像BERT这样的掩码语言模型,则定义不太清楚(请参考模型总结)。经典语言模型:经典语言模型的目标是计算给定一段文本的概率,具体来说,就是计算一个序列中每个token的条件概率,n-gram模型是最基础的经典语言模
- 机器学习的数学基础(三)——概率与信息论
梦醒沉醉
数学基础概率论信息论
目录1.随机变量2.概率分布2.1离散型变量和概率质量函数2.2连续型变量和概率密度函数3.边缘概率4.条件概率5.条件概率的链式法则6.独立性和条件独立性7.期望、方差和协方差7.1期望7.2方差7.3协方差8.常用概率分布8.1均匀分布U(a,b)U(a,b)U(a,b)8.2Bernoulli分布8.3Multinoulli分布8.4高斯分布(正态分布)N(x;μ,σ2)N(x;\mu,\s
- 朴素贝叶斯模型在文本分类中的应用
Ash Butterfield
nlp分类数据挖掘人工智能
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,广泛应用于文本分类任务中。它的核心思想是根据训练数据中不同类别的条件概率,预测新文本属于哪个类别。尽管其假设条件较为简单(假设特征之间相互独立),但朴素贝叶斯在许多实际应用中仍表现出色,特别是在处理文本分类任务时。本文将介绍朴素贝叶斯模型的基本原理、在文本分类中的应用以及其优缺点,并通过示例说明其具体实现。1.朴素贝叶斯模型的基
- AI 写作(三)文本生成算法:创新与突破
sdgfsdfxcg
人工智能算法
生成式模型和判别式模型在多个方面存在明显差异。在优化准则上,生成式模型致力于学习联合概率分布,而判别式模型则专注于建立输入数据和输出之间的关系,学习条件概率分布。对于观察序列的处理,生成式模型模拟数据的生成过程,会对整个序列进行综合考虑;判别式模型更关注如何根据输入数据进行分类或预测,直接建模决策边界。在训练复杂度方面,生成式模型通常较为复杂,因为它需要学习更多的参数来模拟数据的生成过程。例如,常
- 【机器学习理论】朴素贝叶斯网络
SUNX-T
机器学习机器学习概率论人工智能
基础知识:先验概率:对某个事件发生的概率的估计。可以是基于历史数据的估计,可以由专家知识得出等等。一般是单独事件概率。后验概率:指某件事已经发生,计算事情发生是由某个因素引起的概率。一般是一个条件概率。条件概率:条件事件发生后,另一个事件发生的概率。一般的形式为P(B∣A)P(B|A)P(B∣A),表示AAA发生的条件下BBB发生的概率。P(B∣A)=P(AB)P(A)P(B|A)=\frac{P
- 揭秘AI的智能双翼:决策式AI与生成式AI
小马不会过河
人工智能算法embeddingmicrosoft知识图谱
在人在数字化浪潮的推动下,人工智能已成为推动社会进步的关键技术之一。特别是在决策式AI与生成式AI这两个领域,它们的发展不仅加速了技术创新的步伐,也在实际应用中展现出巨大的潜力和价值。01.智能双翼:决策式AI与生成式AI决策式AI(DiscriminativeAI)定义:决策式AI,也称为判别式AI,是一种通过学习数据中的条件概率分布,对新场景进行判断、分析和预测的人工智能技术。它的设计目标是模
- 神经网络|(七)概率论基础知识-贝叶斯公式
西猫雷婶
概率论人工智能概率论
【1】引言前序我们已经了解了一些基础知识。古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。条件概率:在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)全概率公式:全概率公式综合了所有条
- 人工智能与机器学习原理精解【17】
叶绿先锋
基础数学与应用数学人工智能机器学习概率论
文章目录贝叶斯贝叶斯定理的公式推导一、条件概率的定义二、联合概率的分解三、贝叶斯定理的推导四、全概率公式的应用五、总结全概率公式推导一、全概率公式的定义二、全概率公式的推导三、全概率公式的应用贝叶斯定理的原理一、基本原理二、核心概念三、数学表达式四、原理应用五、原理特点朴素贝叶斯定理一、贝叶斯定理基础二、朴素贝叶斯的原理三、朴素贝叶斯的特点朴素贝叶斯公式一、贝叶斯定理二、特征独立性假设三、朴素贝叶
- NLP从零开始------17.文本中阶处理之序列到序列模型(2)
人生百态,人生如梦
nlp从零开始自然语言处理人工智能
3.学习序列到序列模型可以看成一种条件语言模型,以源句x为条件计算目标句的条件概率该条件概率通过概率乘法公式分解为从左到右每个词的条件概率之积:序列到序列模型的监督学习需要使用平行语料,其中每个数据点都包含一对源句和目标句。以中译英机器翻译为例,平行语料的每个数据点就是一句中文句子和对应的一句英文句子。机器翻译领域较为有名的平行语料库来自机器翻译研讨会(workshoponmachinetrans
- Matlab实现多传感器信息融合(D-S证据推论)
冬天都会过去
D-S证据理论是对贝叶斯推理方法推广,主要是利用概率论中贝叶斯条件概率来进行的,贝叶斯条件概率需要知道先验概率。而D-S证据理论不需要知道先验概率,能够很好地表示“不确定”,被广泛用来处理不确定数据。(对来自多传感器数据的融合处理)适用于:信息融合、专家系统、情报分析、法律案件分析、多属性决策分析1、D-S证据理论知识介绍(1)四大定义基本概率分配、信任函数、似然函数、信任区间其中,函数m为识别框
- 亦菲喊你来学机器学习(14) --贝叶斯算法
方世恩
机器学习算法人工智能pythonscikit-learn
文章目录贝叶斯一、贝叶斯定理二、贝叶斯算法的核心概念三、贝叶斯算法的优点与局限优点:局限:四、构建模型训练模型测试模型总结贝叶斯贝叶斯算法(Bayesianalgorithm)是一种基于贝叶斯定理的机器学习方法,主要用于估计模型参数和进行概率推断。以下是对贝叶斯算法的详细解析:一、贝叶斯定理贝叶斯定理是概率论中的一个基本定理,它描述了条件概率之间的关系。该定理的数学表达式为:P(A∣B)=P(B)
- 【深度学习】S2 数学基础 P6 概率论
脚踏实地的大梦想家
#深度学习深度学习概率论
目录基本概率论概率论公理随机变量多个随机变量联合概率条件概率贝叶斯定理求和法则独立性期望与方差小结基本概率论机器学习本质上,就是做出预测。而概率论提供了一种量化和表达不确定性水平的方法,可以帮助我们量化对某个结果的确定性程度。在一个简单的图像分类任务中;如果我们非常确定图像中的对象是一只猫,那么我们可以说标签为“猫”的概率是1,即P(y=“猫”)=1P(y=“猫”)=1P(y=“猫”)=1;如果我
- 自然语言生成任务中的5种采样方法介绍和Pytorch代码实现
在自然语言生成任务(NLG)中,采样方法是指从生成模型中获取文本输出的一种技术。本文将介绍常用的5中方法并用Pytorch进行实现。1、GreedyDecodingGreedyDecoding在每个时间步选择当前条件概率最高的词语作为输出,直到生成结束。在贪婪解码中,生成模型根据输入序列,逐个时间步地预测输出序列中的每个词语。在每个时间步,模型根据当前的隐藏状态和已生成的部分序列计算每个词语的条件
- 扩散模型原理+DDPM案例代码解析
Mikey@Li
机器学习人工智能深度学习
扩散模型原理+代码解析一、数学基础1.1一般的条件概率形式1.2马尔可夫链条件概率形式1.3先验概率和后验概率1.4重参数化技巧1.5KL散度公式二、扩散模型的整体逻辑(以DDPM为例)2.1Diffusion扩散过程(Forward加噪过程)2.2逆向过程(reverse去噪过程)三、训练过程和采样过程3.1训练过程3.2采样过程3.3模型训练的一些细节3.3.1网络的选择3.3.2一些超参数的
- Pixel Recurrent Neural Networks 和 autoregressive models 自回归模型
Longlongaaago
机器学习深度学习
PixelRecurrentNeuralNetworkspixelrnn是生成模型的一种,基于autoregressivemodels。他的思想很简单,就是最大似然估计的方式去拟合图像数据。将二维的图像数据比作序列数据,以条件概率的方式,逐点预测和计算。并且每个像素点的预测都在[0-255]之间,(单通道情况下)如下图1所示:图1,autoregressivemodels在二维图片上的预测方式。其
- 机器学习入门--朴素贝叶斯原理与实践
Dr.Cup
机器学习入门机器学习概率论人工智能
朴素贝叶斯算法朴素贝叶斯是一种常用的分类算法,其基本思想是根据已有数据的特征和标签,学习出一个概率模型,并利用该模型对新样本进行分类。其优点在于简单快速、易于实现和解释,缺点在于对输入数据的分布做了严格的假设。具体来说,朴素贝叶斯分类器首先根据训练数据计算出每个类别的先验概率P©,即样本中每个类别占比。然后,对于给定的待分类样本,计算出它属于每个类别的条件概率P(X|C),其中X表示样本的特征向量
- UVA11181条件概率 Probability|Given
DBWG
洛谷算法概率论
条件概率Probability|Given-洛谷|计算机科学教育新生态(luogu.com.cn)样例解释:需要学习条件概率和贝叶斯定理//12-0.1*0.2*(1-0.3)==0.014//1-30.1*0.8*0.3==0.024//-230.9*0.2*0.3==0.054//0.092//(0.014+0.024)/0.092==0.413043包含1的概率除以所有情况的概率之和就是1买
- 【2018-10-02】条件随机场
BigBigFlower
条件随机场:给定随机变量x条件下,随机变量y的马尔科夫随机场。设X和Y是随机变量,P(Y|X)是在给定X的条件下Y的条件概率分布,若随机变量Y构成一个由无向图G=(V,E)表示的马尔科夫随机场,即满足马尔科夫性:w~v(与v连接的所有w)线性链条件随机场线性链条件随机场的参数形式:tk边上的特征函数,sl节点上的特征函数条件随机场的概率计算问题前向-后向算法定义前向向量:递推公式:定义后向向量:前
- 和米老师思维碰撞
eSoo
最近和米老师的交流,发现自己在学习方法上,还有人生认知上,有很多需要向米老师学习的地方,有很多需要大家帮助的地方,也有很多需要我自己克服的地方,仅以此文记录下和老师交流的几个问题,供大家思考。一,贝叶斯定理贝叶斯公式贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。请问:左边的A,B和右边的A,B一样的吗?答:既一样,又不一样一样在
- Sklearn之StandardScaler(数据预处理)
爱睡觉的琪
sklearn机器学习python
1.哪些机器学习算法不需要(需要)做归一化?概率模型(树形模型)不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、RF、XGboost。而像Adaboost、SVM、LR、Knn、KMeans之类的最优化问题就需要归一化。2.StandardScaler原理作用:使得经过处理的数据符合标准正态分布,即均值为0,标准差为1。且是针对每一个特征维度来做的,而不是针
- 浅谈生成式和判别式模型的区别和联系
浅白Coder
机器学习机器学习人工智能
我们假设有一些已知的训练数据,包括属性集合X和对应的类别标记Y。现在有一个新样本,我们想要预测它的类别。我们的目标是通过求取条件概率的最大值来对新样本进行分类。1.1判别式模型:判别式模型通过训练数据得到一个分类函数和决策边界,例如使用支持向量机(SVM)模型得到一个分界面,然后直接计算条件概率,选择最大概率对应的类别作为新样本的分类结果。判别式模型只对条件概率进行建模,学习不同类别之间的最优边界
- NLP——数学基础
晴晴_Amanda
自然语言处理
文章目录概率论基础概率(probability)最大似然估计(maximumlikelihoodestimation)条件概率(conditionalprobability)全概率公式(fullprobability)贝叶斯公式(Bayes’theorem)贝叶斯决策理论(Bayesiandecisiontheory)最小错误率贝叶斯决策最小风险贝叶斯决策二项式分布(binomialdistrib
- 朴素贝叶斯原理
小森( ﹡ˆoˆ﹡ )
机器学习算法算法人工智能机器学习
朴素贝叶斯的介绍朴素贝叶斯算法(NaiveBayes,NB)是应用最为广泛的分类算法之一。它是基于贝叶斯定义和特征条件独立假设的分类器方法。由于朴素贝叶斯法基于贝叶斯公式计算得到,有着坚实的数学基础,以及稳定的分类效率。NB模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。条件概率:表示事件A在另外一个事件B已经发生条件下的发生概率,P(A|B)在女神喜欢的条件下,职业是程序员的概率?女
- NLP_语言模型的雏形N-Gram
you_are_my_sunshine*
NLP自然语言处理语言模型人工智能
文章目录N-Gram模型1.将给定的文本分割成连续的N个词的组合(N-Gram)2.统计每个N-Gram在文本中出现的次数,也就是词频3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时,下一个词出现的概率。这个概率可以通过计算某个N-Gram出现的次数与前N-1个词(前缀)出现的次数之比得到4.可以使用这些概率来预测文本中下一个词出现的可
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam