强制tensor转换为该数据类型 tf.cast(张量名,dtype=数据类型)
计算张量维度上元素的最小值 tf.reduce_min(张量名)
计算张量维度上元素的最大值 tf.reduce_max(张量名)
import tensorflow as tf
x1 = tf.constant([1,2,3],dtype=tf.float64)
print(x1)
x2 = tf.cast(x1,tf.int32)
print(x2)
print(tf.reduce_min(x2),tf.reduce_max(x2))
"""
输出结果:
tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32) tf.Tensor(3, shape=(), dtype=int32)
"""
计算张量沿着指定维度的平均值 tf.reduce_mean(张量名,axis=操作轴)
计算张量沿着指定维度的和 tf.reduce_sum(张量名,axis=操作轴)
import tensorflow as tf
x = tf.constant([[1,2,3],[2,2,3]])
print(x)
print(tf.reduce_mean(x))
print(tf.reduce_sum(x,axis = 1))
"""
输出结果:
tf.Tensor([[1 2 3][2 2 3]], shape=(2, 3), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor([6 7], shape=(2,), dtype=int32)
"""
# tf.Variable(初始值)
w = tf.Variable(tf.random.normal([2,2],mean=0,stddev=1))
import tensorflow as tf
a = tf.ones([1,3])
b = tf.fill([1,3],3.)
print(a)
print(b)
print(tf.add(a,b))
print(tf.subtract(a,b))
print(tf.multiply(a,b))
print(tf.divide(b,a))
"""
输出结果:
tf.Tensor([[1. 1. 1.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
tf.Tensor([[4. 4. 4.]], shape=(1, 3), dtype=float32)
tf.Tensor([[-2. -2. -2.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
"""
b. 平方、次方与开方:tf.square,tf.pow,tf.sqrt
import tensorflow as tf
a = tf.fill([1,2],3.)
print(a)
print(tf.pow(a,3))
print(tf.square(a))
print(tf.sqrt(a))
输出结果:
tf.Tensor([[3. 3.]], shape=(1, 2), dtype=float32)
tf.Tensor([[27. 27.]], shape=(1, 2), dtype=float32)
tf.Tensor([[9. 9.]], shape=(1, 2), dtype=float32)
tf.Tensor([[1.7320508 1.7320508]], shape=(1, 2), dtype=float32)
c. 矩阵乘:tf.matmul
import tensorflow as tf
a = tf.ones([3,2])
b = tf.fill([2,3],3.)
print(tf.matmul(a,b))
输出结果:
tf.Tensor(
[[6. 6. 6.]
[6. 6. 6.]
[6. 6. 6.]], shape=(3, 3), dtype=float32)
import tensorflow as tf
features = tf.constant([12,23,10,17])
labels = tf.constant([0,1,1,0])
dataset = tf.data.Dataset.from_tensor_slices((features,labels))
print(dataset)
for element in dataset:
print(element)
输出结果:
<TensorSliceDataset shapes: ((), ()), types: (tf.int32, tf.int32)>
(<tf.Tensor: shape=(), dtype=int32, numpy=12>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)
(<tf.Tensor: shape=(), dtype=int32, numpy=23>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=10>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)
(<tf.Tensor: shape=(), dtype=int32, numpy=17>, <tf.Tensor: shape=(), dtype=int32, numpy=0>)
with tf.GradientTape() as tape:
若干个计算过程
grad = tape.gradient(函数,对谁求导)
import tensorflow as tf
with tf.GradientTape() as tape:
w = tf.Variable(tf.constant(3.0))
loss = tf.pow(w,2)
grad = tape.gradient(loss,w)
print(grad)
输出结果:
tf.Tensor(6.0, shape=(), dtype=float32)
enumerate(列表名)
seq = ['one','two','three']
for i,element in enumerate(seq):
print(i,element)
输出结果:
0 one
1 two
2 three
import tensorflow as tf
classes = 3
labels = tf.constant([1,0,2]) #输入最小元素值为0,最大为2
output = tf.one_hot(labels,depth = classes)
print(output)
输出结果:
tf.Tensor([[0. 1. 0.][1. 0. 0.][0. 0. 1.]], shape=(3, 3), dtype=float32)
import tensorflow as tf
y = tf.constant([1.01,2.01,-0.66])
y_pro = tf.nn.softmax(y)
print("After softmax,y_pro is:",y_pro)
输出结果:
After softmax,y_pro is: tf.Tensor([0.25598174 0.69583046 0.0481878 ], shape=(3,), dtype=float32)
w.assign_sub(w要减的内容)
import tensorflow as tf
w = tf.Variable(4)
w.assign_sub(1)
print(w)
输出结果:
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>
import tensorflow as tf
test = np.array([[1,2,3],[2,3,4],[5,4,3],[8,7,2]])
print(test)
print(tf.argmax(test,axis=0)) #返回每一列最大值的索引
print(tf.argmax(test,axis=1)) #返回每一行最大值的索引
输出结果:
[[1 2 3]
[2 3 4]
[5 4 3]
[8 7 2]]
tf.Tensor([3 3 1], shape=(3,), dtype=int64)
tf.Tensor([2 2 0 0], shape=(4,), dtype=int64)
a = tf.constant([1,2,3,1,1])
b = tf.constant([0,1,3,4,5])
c = tf.where(tf.greater(a,b),a,b) #若a>b,返回a对应位置的元素,否则返回b对应位置的元素
print("c:",c)
输出结果:
c: tf.Tensor([1 2 3 4 5], shape=(5,), dtype=int32)
import numpy as np
rdm = np.random.RandomState(seed=1) #seed=常数 表示每次生成随机数相同
a = rdm.rand() #返回一个随机标量
b = rdm.rand(2,3) #返回维度为2行3列随机数矩阵
print("a:",a)
print("b:",b)
输出结果:
a: 0.417022004702574
b: [[7.20324493e-01 1.14374817e-04 3.02332573e-01]
[1.46755891e-01 9.23385948e-02 1.86260211e-01]]
import numpy as np
a = np.array([1,2,3])
b = np.array([4,5,6])
c = np.vstack((a,b))
print("c:\n",c)
输出结果:
c:
[[1 2 3]
[4 5 6]]
import numpy as np
x,y = np.mgrid[1:3:1,2:4:0.5]
grid = np.c_[x.ravel(),y.ravel()]
print("x:",x)
print("y:",y)
print("grid:\n",grid)
输出结果:
x: [[1. 1. 1. 1.]
[2. 2. 2. 2.]]
y: [[2. 2.5 3. 3.5]
[2. 2.5 3. 3.5]]
grid:
[[1. 2. ]
[1. 2.5]
[1. 3. ]
[1. 3.5]
[2. 2. ]
[2. 2.5]
[2. 3. ]
[2. 3.5]]