如何基于国产CPU的云平台构建容器管理平台?(下篇)

随着“中兴事件”不断升级,引起了国人对国产自主可控技术的高度关注;本人作为所在单位的运维工程师,也希望能找到一个稳定、能兼容国产CPU的一整套架构方案,来构建IaaS平台和PaaS平台,满足单位对安全自主可控的需求。要基于全国产方式解决公司业务需求至少要在软硬件层面满足,而国内基本都是基于x86解决方案,想找到满足需求的国产化解决方案还是非常困难的事情。但笔者由于一个偶然的机会,接触到了国产的芯片厂商和云计算厂商,并得知他们已经实现了全国产化的云计算平台,笔者也亲自动手体验了安装部署该云计算平台,并在其之上安装部署了容器平台。上篇我给大家分享了国产CPU的服务器华芯通和国产云平台ZStack试用体验,接下来将为大家详细分享如何基于ZStack云主机构建K8S集群。

第三节 基于ZStack云主机构建K8S集群

这里要提一下,为什么我们不直接使用物理ARM服务器部署K8S集群,这跟单位测试场景有关系,既要使用云主机透传GPU计算卡进行大量的计算,又要实现容器管理平台。况且国外主流的K8S集群通常是跑在虚拟机里面的,运行在虚拟机里面的好处有很多,比如可以实现资源定制分配、利用云平台API接口可以快速生成K8S集群Node节点、更好的灵活性以及可靠性;在ZStack ARM云平台上可以同时构建IaaS+PaaS混合平台,满足不同场景下的需求。

由于篇幅有限下面先介绍一下如何在基于ZStack For ARM平台中云主机部署K8S集群,整个部署过程大概花1小时(这主要是访问部分国外网络时不是很顺畅)。

集群环境介绍:

如何基于国产CPU的云平台构建容器管理平台?(下篇)_第1张图片

在本环境中用于构建K8S集群所需的资源,为基于ZStack构建的平台上的云主机:
如何基于国产CPU的云平台构建容器管理平台?(下篇)_第2张图片

如何基于国产CPU的云平台构建容器管理平台?(下篇)_第3张图片

ZStack云主机K8S集群架构

1、准备工作

配置主机名

hostnamectl set-hostname K8S-Master
hostnamectl set-hostname K8S-Node1
hostnamectl set-hostname K8S-Node2
hostnamectl set-hostname K8S-Node3

所有云主机上关闭swap分区 否则会报错;该操作只需在云主机环境下执行,物理机环境无需操作。

sudo swapoff -a

2、安装部署

2.1安装Docker

step 1: 安装必要的一些系统工具
sudo apt-get update
sudo apt-get -y install apt-transport-https ca-certificates curl software-properties-common

step 2: 安装GPG证书

curl -fsSL http://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | sudo apt-key add -

Step 3: 写入软件源信息

sudo add-apt-repository "deb [arch=arm64] http://mirrors.aliyun.com/docker-ce/linux/ubuntu $(lsb_release -cs) stable"

Step 4: 更新并安装 Docker-CE

sudo apt-get -y update
sudo apt-get -y install docker-ce

使用daocloud对docker镜像下载进行加速。

curl -sSL https://get.daocloud.io/daotools/set_mirror.sh | sh -s http://56d10455.m.daocloud.io

2.2安装go环境

apt-get install golang- golang

2.3 安装kubelet、kubeadm、kubectl

apt-get update && apt-get install -y apt-transport-https
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update
apt-get install -y kubectl kubeadm kubectl

2.4 用kubeadm创建集群

初始化Master
kubeadm init --apiserver-advertise-address  172.120.194.196 --pod-network-cidr 10.244.0.0/16 
执行完上面命令后,如果中途不报错会出现类似以下信息:
  kubeadm join 172.120.194.196:6443 --token oyf6ns.whcoaprs0q7growa --discovery-token-ca-cert-hash sha256:30a459df1b799673ca87f9dcc776f25b9839a8ab4b787968e05edfb6efe6a9d2
这段信息主要是提示如何注册其他节点到K8S集群。

2.5 配置kubectl

Kubectl是管理K8S集群的命令行工具,因此需要对kubectl运行环境进行配置。
su - zstack
sudo mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
echo "source <(kubectl completion bash)" >> ~/.bash

2.6 安装Pod网络

为了让K8S集群的Pod之间能够正常通讯,必须安装Pod网络,Pod网络可以支持多种网络方案,当前测试环境采用Flannel模式。
先将Flannel的yaml文件下载到本地,进行编辑,编辑的主要目的是将原来X86架构的镜像名称,改为ARM架构的。让其能够在ZStack ARM云环境正常运行。修改位置及内容参考下面文件中红色粗体字部分。
sudo wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
vim kube-flannel.yml
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: flannel
rules:
  - apiGroups:
      - ""
    resources:
      - pods
    verbs:
      - get
  - apiGroups:
      - ""
    resources:
      - nodes
    verbs:
      - list
      - watch
  - apiGroups:
      - ""
    resources:
      - nodes/status
    verbs:
      - patch
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:
  name: flannel
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: flannel
subjects:
- kind: ServiceAccount
  name: flannel
  namespace: kube-system
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: flannel
  namespace: kube-system
---
kind: ConfigMap
apiVersion: v1
metadata:
  name: kube-flannel-cfg
  namespace: kube-system
  labels:
    tier: node
    app: flannel
data:
  cni-conf.json: |
    {
      "name": "cbr0",
      "plugins": [
        {
          "type": "flannel",
          "delegate": {
            "hairpinMode": true,
            "isDefaultGateway": true
          }
        },
        {
          "type": "portmap",
          "capabilities": {
            "portMappings": true
          }
        }
      ]
    }
  net-conf.json: |
    {
      "Network": "10.244.0.0/16",
      "Backend": {
        "Type": "vxlan"
      }
    }
---
apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
  name: kube-flannel-ds
  namespace: kube-system
  labels:
    tier: node
    app: flannel
spec:
  template:
    metadata:
      labels:
        tier: node
        app: flannel
    spec:
      hostNetwork: true
      nodeSelector:
        beta.kubernetes.io/arch: arm64
      tolerations:
      - key: node-role.kubernetes.io/master
        operator: Exists
        effect: NoSchedule
      serviceAccountName: flannel
      initContainers:
      - name: install-cni
        image: quay.io/coreos/flannel:v0.10.0-arm64
        command:
        - cp
        args:
        - -f
        - /etc/kube-flannel/cni-conf.json
        - /etc/cni/net.d/10-flannel.conflist
        volumeMounts:
        - name: cni
          mountPath: /etc/cni/net.d
        - name: flannel-cfg
          mountPath: /etc/kube-flannel/
      containers:
      - name: kube-flannel
        image: quay.io/coreos/flannel:v0.10.0-arm64
        command:
        - /opt/bin/flanneld
        args:
        - --ip-masq
        - --kube-subnet-mgr
        resources:
          requests:
            cpu: "100m"
            memory: "50Mi"
          limits:
            cpu: "100m"
            memory: "50Mi"
        securityContext:
          privileged: true
        env:
        - name: POD_NAME
          valueFrom:
            fieldRef:
              fieldPath: metadata.name
        - name: POD_NAMESPACE
          valueFrom:
            fieldRef:
              fieldPath: metadata.namespace
        volumeMounts:
        - name: run
          mountPath: /run
        - name: flannel-cfg
          mountPath: /etc/kube-flannel/
      volumes:
        - name: run
          hostPath:
            path: /run
        - name: cni
          hostPath:
            path: /etc/cni/net.d
        - name: flannel-cfg
          configMap:
            name: kube-flannel-cfg

sudo kubectl apply -f   kube-flannel.yml
执行上面命令后会正常情况下会有如下输出:
clusterrole.rbac.authorization.k8s.io "flannel" created
clusterrolebinding.rbac.authorization.k8s.io "flannel" created
serviceaccount "flannel" created
configmap "kube-flannel-cfg" created
daemonset.extensions "kube-flannel-ds" created

2.7 注册节点到K8S集群
分别在K8S-Node1、K8S-Node2、K8S-Node3

kubeadm join 172.120.194.196:6443 --token oyf6ns.whcoaprs0q7growa --discovery-token-ca-cert-hash sha256:30a459df1b799673ca87f9dcc776f25b9839a8ab4b787968e05edfb6efe6a9d2

kubectl get nodes 查看节点状态
zstack@K8S-Master:~$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8s-master Ready master 49m v1.11.0
k8s-node1 NotReady 4m v1.11.0
k8s-node2 NotReady 4m v1.11.0
k8s-node3 NotReady 4m v1.11.0
如果发现所有节点是NotReady 是因每个节点都需要启动若干个组件,这些组件都是在Pod中运行,且需要到Google下载镜像。使用下面命令查看Pod运行状况:

kubectl get pod --all-namespaces  正常情况应该是如下的状态:
NAMESPACE     NAME                                 READY     STATUS    RESTARTS   AGE
kube-system   coredns-78fcdf6894-49tkw             1/1       Running   0          1h
kube-system   coredns-78fcdf6894-gmcph             1/1       Running   0          1h
kube-system   etcd-k8s-master                      1/1       Running   0          19m
kube-system   kube-apiserver-k8s-master            1/1       Running   0          19m
kube-system   kube-controller-manager-k8s-master   1/1       Running   0          19m
kube-system   kube-flannel-ds-bqx2s                1/1       Running   0          16m
kube-system   kube-flannel-ds-jgmjp                1/1       Running   0          16m
kube-system   kube-flannel-ds-mxpl8                1/1       Running   0          21m
kube-system   kube-flannel-ds-sd6lh                1/1       Running   0          16m
kube-system   kube-proxy-cwslw                     1/1       Running   0          16m
kube-system   kube-proxy-j75fj                     1/1       Running   0          1h
kube-system   kube-proxy-ptn55                     1/1       Running   0          16m
kube-system   kube-proxy-zl8mb                     1/1       Running   0          16m
kube-system   kube-scheduler-k8s-master            1/1       Running   0          19m
在整个过程中如果发现状态为Pending、ContainerCreateing、ImagePullBackOff等状态都表示Pod还未就绪,只有Running状态才是正常的。要做的事情只有等待。

kubectl get nodes 再次查看节点状态
NAME STATUS ROLES AGE VERSION
k8s-master Ready master 1h v1.11.0
k8s-node1 Ready 16m v1.11.0
k8s-node2 Ready 16m v1.11.0
k8s-node3 Ready 16m v1.11.0
当所有节点均为 Ready状时,此时就可以使用这个集群了

2.8 部署kubernetes-dashboard
克隆kubernetes-dashboard yaml文件

sudo git clone https://github.com/gh-Devin/kubernetes-dashboard.git

修改kubernetes-dashboard yaml文件,修改内容为下面红色粗体部分。

cd kubernetes-dashboard/
vim kubernetes-dashboard.yaml
# Copyright 2017 The Kubernetes Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Configuration to deploy release version of the Dashboard UI compatible with
# Kubernetes 1.8.
#
# Example usage: kubectl create -f 

# ------------------- Dashboard Secret ------------------- #

apiVersion: v1
kind: Secret
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard-certs
  namespace: kube-system
type: Opaque

---
# ------------------- Dashboard Service Account ------------------- #

apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kube-system

---
# ------------------- Dashboard Role & Role Binding ------------------- #

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: kubernetes-dashboard-minimal
  namespace: kube-system
rules:
  # Allow Dashboard to create 'kubernetes-dashboard-key-holder' secret.
- apiGroups: [""]
  resources: ["secrets"]
  verbs: ["create"]
  # Allow Dashboard to create 'kubernetes-dashboard-settings' config map.
- apiGroups: [""]
  resources: ["configmaps"]
  verbs: ["create"]
  # Allow Dashboard to get, update and delete Dashboard exclusive secrets.
- apiGroups: [""]
  resources: ["secrets"]
  resourceNames: ["kubernetes-dashboard-key-holder", "kubernetes-dashboard-certs"]
  verbs: ["get", "update", "delete"]
  # Allow Dashboard to get and update 'kubernetes-dashboard-settings' config map.
- apiGroups: [""]
  resources: ["configmaps"]
  resourceNames: ["kubernetes-dashboard-settings"]
  verbs: ["get", "update"]
  # Allow Dashboard to get metrics from heapster.
- apiGroups: [""]
  resources: ["services"]
  resourceNames: ["heapster"]
  verbs: ["proxy"]
- apiGroups: [""]
  resources: ["services/proxy"]
  resourceNames: ["heapster", "http:heapster:", "https:heapster:"]
  verbs: ["get"]

---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: kubernetes-dashboard-minimal
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: kubernetes-dashboard-minimal
subjects:
- kind: ServiceAccount
  name: kubernetes-dashboard
  namespace: kube-system

---
# ------------------- Dashboard Deployment ------------------- #

kind: Deployment
apiVersion: apps/v1beta2
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kube-system
spec:
  replicas: 1
  revisionHistoryLimit: 10
  selector:
    matchLabels:
      k8s-app: kubernetes-dashboard
  template:
    metadata:
      labels:
        k8s-app: kubernetes-dashboard
    spec:
      serviceAccountName: kubernetes-dashboard
      containers:
      - name: kubernetes-dashboard
        image: k8s.gcr.io/kubernetes-dashboard-arm64:v1.8.3
        ports:
        - containerPort: 9090
          protocol: TCP
        args:
          #- --auto-generate-certificates
          # Uncomment the following line to manually specify Kubernetes API server Host
          # If not specified, Dashboard will attempt to auto discover the API server and connect
          # to it. Uncomment only if the default does not work.
        volumeMounts:
        - name: kubernetes-dashboard-certs
          mountPath: /certs
          # Create on-disk volume to store exec logs
        - mountPath: /tmp
          name: tmp-volume
        livenessProbe:
          httpGet:
            scheme: HTTP
            path: /
            port: 9090
          initialDelaySeconds: 30
          timeoutSeconds: 30
      volumes:
      - name: kubernetes-dashboard-certs
        secret:
          secretName: kubernetes-dashboard-certs
      - name: tmp-volume
        emptyDir: {}
      serviceAccountName: kubernetes-dashboard-admin
      # Comment the following tolerations if Dashboard must not be deployed on master
      tolerations:
      - key: node-role.kubernetes.io/master
        effect: NoSchedule

---
# ------------------- Dashboard Service ------------------- #

kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kube-system
spec:
  ports:
    - port: 9090
      targetPort: 9090
  selector:
    k8s-app: kubernetes-dashboard

# ------------------------------------------------------------
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard-external
  namespace: kube-system
spec:
  ports:
    - port: 9090
      targetPort: 9090
      nodePort: 30090
  type: NodePort
  selector:
k8s-app: kubernetes-dashboard
修改完成后执行 
kubectl  -n kube-system create -f .
执行命令的正常输出:
serviceaccount "kubernetes-dashboard-admin" created
clusterrolebinding.rbac.authorization.k8s.io "kubernetes-dashboard-admin" created
secret "kubernetes-dashboard-certs" created
serviceaccount "kubernetes-dashboard" created
role.rbac.authorization.k8s.io "kubernetes-dashboard-minimal" created
rolebinding.rbac.authorization.k8s.io "kubernetes-dashboard-minimal" created
deployment.apps "kubernetes-dashboard" created
service "kubernetes-dashboard-external" created

然后查看kubernetes-dashboard Pod的状态
kubectl get pod --all-namespaces

NAMESPACE     NAME                                    READY     STATUS    RESTARTS   AGE
kube-system   kubernetes-dashboard-66885dcb6f-v6qfm   1/1       Running   0          8m

当状态为running 时执行下面命令 查看端口
kubectl --namespace=kube-system describe svc kubernetes-dashboard
Name:                     kubernetes-dashboard-external
Namespace:                kube-system
Labels:                   k8s-app=kubernetes-dashboard
Annotations:              
Selector:                 k8s-app=kubernetes-dashboard
Type:                     NodePort
IP:                       10.111.189.106
Port:                       9090/TCP
TargetPort:               9090/TCP
NodePort:                   30090/TCP     此端口为外部访问端口
Endpoints:                10.244.2.4:9090
Session Affinity:         None
External Traffic Policy:  Cluster
Events:                   

注意:如果在部署K8S-Dashboard界面过程中如果则登录UI的时候会报错:
如何基于国产CPU的云平台构建容器管理平台?(下篇)_第4张图片
这是因为K8S在1.6版本以后启用了RBAC访问控制策略,可以使用kubectl或Kubernetes API进行配置。使用RBAC可以直接授权给用户,让用户拥有授权管理的权限,这样就不再需要直接触碰Master Node。按照上面部署步骤则可以避免。
如何基于国产CPU的云平台构建容器管理平台?(下篇)_第5张图片
如何基于国产CPU的云平台构建容器管理平台?(下篇)_第6张图片
至此,基于ARM环境的K8S集群就部署完成了。

第四节 全篇总结

先说说关于ZStack安装部署的一些心得,整个ZStack For ARM平台部署到业务环境构建的过程,都是比较流畅的。ZStack产品化程度高,安装过程非常简单,基本上按照官方部署文档1个小时内就能完成3台规模的云平台搭建及平台初始化工作。
ZStack云平台采用独特的异步架构,大大提升了平台响应能力,使得批量并发操作不再成为烦恼;管理层面与业务层面独立,不会因为管理节点意外宕机导致业务中断;平台内置大量实用性很高的功能,极大方便了在测试过程中运维任务;版本升级简单可靠,完全实现5分钟跨版本无缝升级,经实测升级过程中完全不影响业务正常运行。通过升级后能实现异构集群管理,也就是说在ARM服务器上构建管理节点,可以同时管理ARM集群中的资源,也能管理X86架构集群中的资源;同时实现高级SDN功能。

而基于ZStack云主机构建K8S集群时,我们团队在选择方案的时候,也拿物理机和云主机做过一系列对比,对比之后发现当我用ZStack云主机部署K8S集群的时候更加灵活、可控。具体的可以在以下几个方面体现:

1、ZStack云主机天生隔离性好
对容器技术了解的人应该清楚,多个容器公用一个Host Kernel;这样就会遇到隔离性方面的问题,虽然随着技术发展,目前也可以使用Linux系统上的防护机制实现安全隔离,但是从某个层面讲并不是完全隔离,而云主机方式受益于虚拟化技术,天生就有非常好的隔离性,从而可以进一步保障安全。ZStack就是基于KVM虚拟化技术架构自研。

2、受益于ZStack云平台多租户
在物理服务器上运行的大堆容器要实现资源自理,所谓资源自理就是各自管理自己的容器资源,那么这个时候问题就来了,一台物理机上有成千上万个容器怎么去细分管理范围呢?这个时候云平台的多租户管理就派上用处了,每个租户被分配到相应的云主机,各自管理各自的云主机以及容器集群。同时还能对不同人员权限进行控制管理。在本次测试的ZStack For ARM云平台,就可以实现按企业组织架构方式进行资源、权限管理,同时还能实现流程审批,审批完成后自动创建所需的云主机;据说后面发布的ZStack2.5.0版本还有资源编排功能。

3. ZStack云平台灵活性、自动化程度高
通过ZStack,可以根据业务需求,对云主机进行资源定制,减少资源浪费。同时根据自身业务情况调整架构实现模式,比如:有计算密集型业务,此时可以借助GPU透传功能,将GPU透传到云主机,能快速实现计算任务,避免过多繁琐配置。
另外目前各种云平台都有相应API接口,可以方便第三方应用直接调用,从而实现根据业务压力自动进行资源伸缩。但是对于物理服务器来说没什么完整的API接口,基本上都是基于IPMI方式进行管理,而且每个厂商的IPMI还不通用,很难实现资源的动态伸缩。说到API接口,我了解到的ZStack云平台,具备全API接口开放的特点。可以使容器集群根据业务压力自动伸缩。

4、可靠性非常好
为什么这么说呢?其实不难理解,计划内和计划外业务影响少。当我们对物理服务器进行计划内维护时,那些单容器运行的业务必定会受影响,此时可以借助云平台中的热迁移功能,迁移的过程中可实现业务不中断。对于计划外停机,对业务影响基本上都是按天算的,损失不可言表。如果采用云平台方式业务中断时间将会缩短到分钟级别。

上面简单分享了一下用云主机构建K8S集群的一些优点,当然也有一些缺点,在我看来缺点无非就是性能有稍微点损失,总之利大于弊。可以在规划时规避掉这个问题,比如可以将性能型容器资源集中放到物理Node上,这样就可以完美解决了。
最后再说说在ZStack ARM架构的云主机上部署K8S需要注意的地方,为大家提供一些参考。

1、默认Get下来的yaml配置文件,里面涉及的image路径都是x86架构的amd64,需要将其改成arm64。

2、在创建集群的时候,如果采用flannel网络模式则–pod-network-cidr一定要为 10.244.0.0/16,否则Pod网可能不通。
3、云主机环境一定要执行sudo swapoff -a 不然创建K8S集群的时候就会报错。

以上就是我本次的主要分享内容,欢迎大家关注交流。(qq:410185063;mail:[email protected]

欢迎大家在ZStack官网最新下载页面(http://www.zstack.io/product_downloads/)进行免费的下载安装和试用。

感兴趣的朋友可以扫描下面的二维码加入ZStack微信公众号(zstack_io),也可以加入ZStack 中国社区QQ群(410185063)参与技术交流与讨论。
如何基于国产CPU的云平台构建容器管理平台?(下篇)_第7张图片

你可能感兴趣的:(如何基于国产CPU的云平台构建容器管理平台?(下篇))