- 使用LLaVa和Ollama实现多模态RAG示例
llzwxh888
python人工智能开发语言
本文将详细介绍如何使用LLaVa和Ollama实现多模态RAG(检索增强生成),通过提取图像中的结构化数据、生成图像字幕等功能来展示这一技术的强大之处。安装环境首先,您需要安装以下依赖包:!pipinstallllama-index-multi-modal-llms-ollama!pipinstallllama-index-readers-file!pipinstallunstructured!p
- 如何给QQ邮箱自动发邮件?无惧「小爱」下线!代码全公开,两步搞定
AI码上来
AI实战微信人工智能python
前两天,搞了个微信AI小助理-小爱(AI),爸妈玩的不亦乐乎。零风险!零费用!我把AI接入微信群,爸妈玩嗨了,附教程(下)最近一直在迭代中,挖掘小爱的无限潜力:链接丢给它,精华吐出来!微信AI小助理太强了,附完整提示词拥有一个能倾听你心声的「微信AI小助理」,是一种什么体验?小爱打工,你躺平!让「微信AI小助理」接管你的文件处理,一个字:爽!我把多模态大模型接入了「小爱」,痛快来一场「表情包斗图」
- 腾讯发表多模态综述,一文详解多模态大模型
存内计算开发者社区
多模态大模型人工智能chatgptAIGC量子计算AI-nativegptagi
多模态大语言模型(MLLM)是近年来兴起的一个新的研究热点,它利用强大的大语言模型作为大脑来执行多模态任务。MLLM令人惊讶的新兴能力,如基于图像写故事和无OCR的数学推理,在传统方法中是罕见的,这表明了一条通往人工通用智能的潜在道路。在本文中,追踪多模态大模型最新热点,讨论多模态关键技术以及现有在情绪识别上的应用。腾讯AILab发表了一篇关于多模态大模型的最新综述《MM-LLMs:RecentA
- 基于深度学习的文本引导的图像编辑
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的文本引导的图像编辑(Text-GuidedImageEditing)是一种通过自然语言文本指令对图像进行编辑或修改的技术。它结合了图像生成和自然语言处理(NLP)的最新进展,使用户能够通过描述性文本对图像内容进行精确的调整和操控。1.文本引导的图像编辑的挑战文本和图像之间的对齐:如何将文本中的语义信息准确地映射到图像中的特定区域或元素是一个关键挑战。这涉及到多模态数据的对齐和理解。编
- 多模态Transformer之文本与图像联合建模 - Transformer教程
shandianfk_com
ChatGPTTransformertransformer深度学习人工智能
大家好,今天我们来聊聊一个既前沿又有趣的话题——多模态Transformer,特别是文本与图像的联合建模。对于很多小伙伴来说,Transformer这个词已经不陌生了,但它不仅仅应用于自然语言处理,还能在图像处理、甚至是多模态数据的处理上大显身手。接下来,我会带大家深入了解什么是多模态Transformer,以及它是如何实现文本与图像的联合建模的。Transformer简介首先,我们简单回顾一下T
- 【人工智能】多模态AI:如何通过融合文本、图像与音频重塑智能系统未来
2的n次方_
小水文人工智能图像处理
我的主页:2的n次方_随着人工智能技术的飞速发展,多模态AI逐渐成为构建智能系统的重要方向。传统的AI系统通常依赖于单一模态的数据,如文本、图像或音频。而多模态AI通过结合多种数据类型,能够在更复杂的场景下提供更智能的解决方案。本文将深入探讨多模态AI的原理、应用场景及其未来发展,并通过代码示例展示如何构建一个多模态AI系统。1.多模态AI的基本原理多模态AI的核心在于融合来自不同模态(如文本、图
- 多模态大模型微调Qwen-VL微调及日志
Messi^
人工智能-大模型应用python人工智能深度学习
%pipinstallmodelscope-U%pipinstalltransformersacceleratetiktoken-U%pipinstalleinopstransformers_stream_generator-U%pipinstallpillow-U%pipinstalltorchvision%pipinstallmatplotlib-Ufrommodelscopeimport(s
- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- [AI资讯·0605] GLM-4系列开源模型,OpenAI安全疑云,ARM推出终端计算子系统,猿辅导大模型备案……
老牛同学
AI人工智能ai大模型AI资讯
AI资讯1毛钱1百万token,写2遍红楼梦!国产大模型下一步还想卷什么?AI「末日」突然来临,公司同事集体变蠢!只因四大聊天机器人同时宕机OpenAI员工们开始反抗了!AI手机PC大爆发,Arm从软硬件到生态发力,打造行业AI百宝箱GLM-4开源版本:超越Llama3,多模态比肩GPT4V,MaaS平台也大升级猿辅导竟然是一家AI公司?大模型全家桶曝光|甲子光年FineChatBI,帆软在AI方
- 文本生成图像工作简述1--概念介绍和技术梳理
尹凯
姓名:尹凯学号:22011210590学院:通信工程学院原文链接:https://blog.csdn.net/air__Heaven/article/details/127302735【嵌牛导读】文本生成图像的概念介绍与技术梳理【嵌牛鼻子】文本生成图像基于深度学习的机器学习方法已经在语音、文本、图像等单一模态领域取得了巨大的成功,而同时涉及到多种输入模态的多模态机器学习研究有巨大的应用前景和广泛的
- 多模态大语言模型(MLLMs)-一般架构(非常详细)零基础入门到精通,收藏这一篇就够了
程序员_大白
语言模型人工智能自然语言处理
多模态大语言模型(MultimodalLargeLanguageModel,MLLM),在LLM原有的强大泛化和推理能力基础上,进一步引入了多模态信息处理能力。相比于以往的多模态方法,例如以CLIP为代表的判别式,或以OFA为代表的生成式,新兴的MLLM展现出一些典型的特质,在下面这两种特质的加持下,MLLM涌现出一些以往多模态模型所不具备的能力!模型大。MLLM通常具有数十亿的参数量,更多的参数
- 大规模语言模型从理论到实践 vLLM推理框架实践
AGI通用人工智能之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践:vLLM推理框架实践1.背景介绍1.1问题的由来随着大规模语言模型(LargeLanguageModels,vLLMs)的发展,从简单的语言生成到复杂的多模态任务,这些模型的能力得到了显著提升。然而,如何高效地利用这些模型进行推理成为了新的挑战。传统的方法往往受限于模型的输入长度、计算资源的限制以及缺乏有效的任务分解策略。为了解决这些问题,vLLM推理框架应运而生,旨在
- 微信小程序的四种弹窗使用
少年负剑去
开发知识微信小程序小程序
在做小程序的过程中,弹窗也算是非常实用的功能了,这几天写的几个功能就用到了弹窗,也可能是初学者的问题,比较菜,想找一个可以带图片的自定义的弹窗,,这里简单介绍一下官方封装好的四个弹窗,感觉适合简单的使用,,想在展示多点内容就不太够了。。一、wx.showModal微信小程序提供的用于显示模态对话框的API,它允许开发者创建一个居中显示的弹窗,用来显示重要信息或请求用户确认操作。参数说明:标题(ti
- 小程序的三种弹框showToast、showModal、showLoading
前端-文龙刚
小程序小程序
小程序常用的三种弹框有:showToast:消息提示框showModal:模态对话框showLoading:加载框第一:showToast:消息提示框默认的样式自定义icon图标具体代码如下:wx.showToast({title:'成功',//提示内容icon:'loading',//图标(success成功图标、error失败图标、loading加载图标、none不显示图标)image:'..
- 大模型中的多模态概念指的是什么
张3蜂
计算机视觉人工智能深度学习
大模型中的多模态(Multimodal)概念是指模型能够同时处理和理解来自多种类型的数据或信息模式(modalities),如文本、图像、音频、视频等。这种模型不仅可以从单一模态(如仅文本或仅图像)中学习,还能够结合多种模态的数据,从而增强模型的理解能力和表现。以下是一些与多模态相关的核心概念:模态(Modalities):指的是数据的不同形式或类型。常见的模态包括:文本(Text):自然语言文本
- 百行代码复现扩散模型-基于线性回归
李新然
数据统计分析深度学习线性回归算法回归python数据分析
文章目录引言简化模型原本模型模型改造实现过程数据集文本编码图像编码解码扩散过程训练过程生成过程完整实现结论引言多模态的深度学习模型,通常需要大量的算力去训练和验证。这导致缺乏算力的普通读者,阅读“大模型”论文,只能按论文作者所写来构造自己的认知。可能对很多类似笔者的人来说:纸上得来终觉浅。或许我们可以退而求其次,只选择Follow论文的思路。本文以DiffusionModel为例,说明从核心思想来
- iOS—push和present区别(含dismiss多级的方法)
Fttt.
push和present都可以推出新的页面,present推出的是模态视图。present一般用于不同业务界面的切换,push一般用于同一业务不同界面之间的切换present与dismiss对应,push和pop对应。present只能逐级返回,push所有视图由视图栈控制,可以返回上一级,也可以返回到根视图、其他视图。push方法NextViewController*next=[[NextVie
- 新技术前沿-2024-国内主流AI大模型架构及应用场景深度分析
皮皮冰燃
新技术前沿人工智能
参考国内主流AI大模型架构及应用场景深度分析20241厂商总览1.1国外(1)OpenAI:GPT-4【美国旧金山的人工智能研究公司】GPT-4于2023年3月14日发布,是千亿级参数的多模态预训练模型,能够支持图像和文本的输入。(2)Anthropic(人类的):Claude【美国人工智能初创公司】Claude于2023年3月14日发布,是Anthropic开发的类似ChatGPT的聊天机器人,
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.25-2024.08.01
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理VLM大语言模型计算机视觉视觉语言模型
文章目录~1.PayingMoreAttentiontoImage:ATraining-FreeMethodforAlleviatingHallucinationinLVLMs2.MTA-CLIP:Language-GuidedSemanticSegmentationwithMask-TextAlignment3.MarvelOVD:MarryingObjectRecognitionandVisi
- 06_Qt对话框QDialog
夏玉林的学习之路
Qt基础知识qt
Qt对话框QDialog基本概念标准对话框自定义消息框模态对话框非模态对话框消息对话框标准文件对话框代码基本概念对话框是GUI程序中不可或缺的组成部分。很多不能或者不适合放入主窗口的功能组件都必须放在对话框中设置。对话框通常会是一个顶层窗口,出现在程序最上层,用于实现短期任务或者简洁的用户交互。Qt中使用QDialog类实现对话框。就像主窗口一样,我们通常会设计一个类继承QDialog。QDial
- 【Python】成功解决IndexError: list index out of range
高斯小哥
BUG解决方案合集pythonlist新手入门学习debug
【Python】成功解决IndexError:listindexoutofrange下滑查看解决方法欢迎莅临我的个人主页这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!博主简介:985高校的普通本硕,曾有幸发表过人工智能领域的中科院顶刊一作论文,熟练掌握PyTorch框架。技术专长:在CV、NLP及多模态等领域有丰富的项目实战经验。已累计一对一为数百位用户提供近千次专业服务,助力他们少走
- 多模态大模型论文总结
sudun_03
语言模型算法人工智能
MM1:Methods,Analysis&InsightsfromMultimodalLLMPre-training在这项工作中,我们讨论了建立高性能的多模态大型语言模型(MLLMs)。特别是,我们研究了各种模型结构组件和数据选择的重要性。通过对图像编码器、视觉语言连接器和各种预训练数据选择的仔细而全面的验证,我们确定了几个关键的设计教训。例如,我们证明,与其他已发表的多模式预训练结果相比,对于使
- 大语言模型为什么这么强?关键步骤是……
青花科技
语言模型人工智能自然语言处理
作者主页:青花锁简介:Java领域优质创作者、Java微服务架构公号作者简历模板、学习资料、面试题库、技术互助文末获取联系方式目录前言什么是大模型1.1、具备涌现能力1.2、多模态能力增强2、预训练往期热门专栏回顾前言研究人员发现,随着语言模型参数量的不断增加,模型完成各个任务的效果也得到不同程度的提升。什么是大模型大语言模型是指模型参数量超过一定规模的语言模型,相比参数量较小的预训练模型(如BE
- 【专题】2024年中国AI人工智能基础数据服务研究报告合集PDF分享(附原数据表)
拓端研究室
人工智能
原文链接:https://tecdat.cn/?p=37516随着人工智能技术的迅猛发展,AI基础数据服务行业迎来了前所未有的发展机遇。报告合集显示,2023年中国AI基础数据服务市场规模达到45亿元,且未来五年复合增长率有望达到30.4%。多模态大模型、长文本处理能力提升以及大模型小型化技术成为AI领域热点研究方向,从而推动了对高质量数据的大量需求。阅读原文,获取专题报告合集全文,解锁文末403
- Python(PyTorch和TensorFlow)图像分割卷积网络导图(生物医学)
亚图跨际
交叉知识Python生物医学脑肿瘤图像皮肤病变多模态医学图像多尺度特征生物医学腹部胰腺图像病灶边界气胸图像
要点语义分割图像三层分割椭圆图像脑肿瘤图像分割动物图像分割皮肤病变分割多模态医学图像多尺度特征生物医学肖像多类和医学分割通用图像分割模板腹部胰腺图像分割分类注意力网络病灶边界分割气胸图像分割Python生物医学图像卷积网络该网络由收缩路径和扩展路径组成,收缩路径是一种典型的卷积网络,由重复应用卷积组成,每个卷积后跟一个整流线性单元(ReLU)和一个最大池化操作。在收缩过程中,空间信息减少,而特征信
- 多模态视野:探索Qwen-VL的70亿参数世界
努力犯错
人工智能计算机视觉深度学习gpt-3语言模型
引言在人工智能的迅猛发展中,多模态大模型成为了新的研究热点。阿里云推出的Qwen-VL模型,就是在这一领域的重要突破。作为一款基于70亿参数的通义千问模型Qwen-7B开发的多模态视觉语言模型,Qwen-VL不仅在技术上实现了创新,更在多模态任务评测中展现出卓越的性能。官网demo技术特点Qwen-VL模型的核心在于其多模态理解能力。它能够同时处理图像和文本信息,实现更加全面和深入的数据解析。这一
- 开源AI图像识别:支持扫描文件批量识别快速对接数据库存储
思通数科x
人工智能计算机视觉图像处理OCR文本识别
随着数字化转型的不断深入,图像识别技术在各行各业中的应用越来越广泛。文件封识别作为图像识别技术的一个分支,能够有效地提高文件处理的自动化程度和准确性。本文将探讨文件封识别技术的原理、应用场景以及如何将识别后的内容批量对应数据库字段进行存储。开源项目介绍(可本地部署,支持国产化)思通数科研发了一款多模态AI能力引擎,专注于提供自然语言处理(NLP)、情感分析、实体识别、图像识别与分类、OCR识别和语
- 基于云原生向量数据库 PieCloudVector 的 RAG 实践
OpenPie|拓数派
OpenPie|拓数派云原生向量数据库PieCloudVectorPieCloudDBOpenPie
近年来,人工智能生成内容(AIGC)已然成为最热门的话题之一。工业界出现了各种内容生成工具,能够跨多种模态产生多样化的内容。这些主流的模型能够取得卓越表现,归功于创新的算法、模型规模的大幅扩展,以及海量的高质量数据集。然而AIGC依然面临一系列挑战,检索增强生成(RAG)技术作为LLM的一项重要补充被提出。本文将结合实例演示,和大家一起探索基于PieCloudVector的RAG实践。AIGC强调
- 多模态大模型:技术原理与实战 ChatGPT的诞生
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战ChatGPT的诞生作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习在NLP中的应用1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2预训练语言模型的发展1.3.3GPT系
- 微软推出Phi-3.5系列AI模型
百态老人
microsoft人工智能
是的,微软确实推出了Phi-3.5系列AI模型。这一系列包括三款轻量级AI模型:Phi-3.5-MoE、Phi-3.5-vision和Phi-3.5-mini。这些模型基于合成数据和经过过滤的公开网站构建,上下文窗口为128K。具体来说,Phi-3.5-MoE是该系列中的首个混合专家模型(MoE),具有显著的性能优势。Phi-3.5-vision则是一款多模态AI模型,能够同时处理文本和视觉输入。
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST