你真的懂Android Handler吗?(二)

你真的懂Android的Handler机制吗?在回答这个问题之前先问自己几个问题:

1、Handler是如何跟线程绑定的?

2、Handler中的消息是怎么传递的?是通过回调还是通过循环?

3、如果是通过循环传递的,那么为什么消息队列为空时没有引起ANR?是不是在非UI线程中进行的无限循环?

4、如果是在非UI线程中进行的无限循环,那么在UI线程发送消息并且在UI线程中处理消息时是否进行了线程切换?这样做是否浪费了资源?有没有更好的解决方案?

5、Handler是如何进行线程切换的?

我们从Handler对象的创建入手,深挖一下Handler消息机制。

 

上一篇文章我们知道了Handler是如何跟当前线程绑定到一起的,以及ThreadLocal在线程绑定过程中所起的作用,这一篇文章我们继续学习Handler中消息的传递过程。

我们首先熟悉一下Handler的构造方法

/**
     * Use the {@link Looper} for the current thread with the specified callback interface
     * and set whether the handler should be asynchronous.
     *
     * Handlers are synchronous by default unless this constructor is used to make
     * one that is strictly asynchronous.
     *
     * Asynchronous messages represent interrupts or events that do not require global ordering
     * with respect to synchronous messages.  Asynchronous messages are not subject to
     * the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
     *
     * @param callback The callback interface in which to handle messages, or null.
     * @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
     * each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
     *
     * @hide
     */
    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

通过代码可以看到,在Handler的构造方法中,获取到Looper对象之后将Looper对象的mQueue属性赋值给Handler的mQueue属性,mQueue是MessageQueue类型的属性,用来存放待处理的消息,其原理我们稍后分析。

下面我们开始分析Handler的消息分发过程,我们从Handler的post()方法开始分析。

    /**
     * Causes the Runnable r to be added to the message queue.
     * The runnable will be run on the thread to which this handler is 
     * attached. 
     *  
     * @param r The Runnable that will be executed.
     * 
     * @return Returns true if the Runnable was successfully placed in to the 
     *         message queue.  Returns false on failure, usually because the
     *         looper processing the message queue is exiting.
     */
    public final boolean post(Runnable r)
    {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }

post()方法会将Runnale参数封装到Message中,然后调用sendMessageDelayed()方法将消息添加到队列中。下面分别是生成message的方法和sendMessageDelayed()方法。

    private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

    /**
     * Enqueue a message into the message queue after all pending messages
     * before (current time + delayMillis). You will receive it in
     * {@link #handleMessage}, in the thread attached to this handler.
     *  
     * @return Returns true if the message was successfully placed in to the 
     *         message queue.  Returns false on failure, usually because the
     *         looper processing the message queue is exiting.  Note that a
     *         result of true does not mean the message will be processed -- if
     *         the looper is quit before the delivery time of the message
     *         occurs then the message will be dropped.
     */
    public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

sendMessageDelayed()方法只是简单的调用了sendMessageAtTime(),延时0毫秒。

下面是将Message存放到MessageQueue的代码:

    /**
     * Enqueue a message into the message queue after all pending messages
     * before the absolute time (in milliseconds) uptimeMillis.
     * The time-base is {@link android.os.SystemClock#uptimeMillis}.
     * Time spent in deep sleep will add an additional delay to execution.
     * You will receive it in {@link #handleMessage}, in the thread attached
     * to this handler.
     * 
     * @param uptimeMillis The absolute time at which the message should be
     *         delivered, using the
     *         {@link android.os.SystemClock#uptimeMillis} time-base.
     *         
     * @return Returns true if the message was successfully placed in to the 
     *         message queue.  Returns false on failure, usually because the
     *         looper processing the message queue is exiting.  Note that a
     *         result of true does not mean the message will be processed -- if
     *         the looper is quit before the delivery time of the message
     *         occurs then the message will be dropped.
     */
    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }


    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

sendMessageAtTime()方法调用了enqueueMessage()。

在enqueueMessage()方法中,首先设置了Message对象的target属性为this,当Handler对象handler处理消息时要先验证消息时应该先验证handler是否等于Message的target,这样就能防止handler处理不需要自己处理的消息;其次设置了Message是否是异步的,默认为false(见Handler的构造方法),异步的消息可以跳过Looper的同步屏障(同步屏障是指,必须要满足一定的条件,该消息才能被处理)。最后enqueueMessage()方法调用了queue.enqueueMessage(msg, uptimeMillis)方法将消息添加到队列中。下面是详细代码:

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            //设置应该处理时间
            msg.when = when;
            //获取消息队列中的当前消息
            Message p = mMessages;
            boolean needWake;
            //如果消息队列中的当前消息为null,或者应处理时间为0,或者应处理时间小于当前消息的应处理时间,就把新消息插到当前消息前面
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

我们看到queue.enqueueMessage(msg, uptimeMillis)方法将消息按要处理的时间顺序插入到了消息队列中。至此,消息已经发布出去,但是Handler什么时候可以收到消息并处理消息呢?这个时候就要用到Looper了。

我们先看下Handler在线程中的创建过程:

class LooperThread extends Thread {
      public Handler mHandler;

      public void run() {
          //1、调用Looper.prepare(),此时Looper会跟线程绑定
          Looper.prepare();

          //2、创建Handler对象
          mHandler = new Handler() {
              public void handleMessage(Message msg) {
                  // process incoming messages here
              }
          };

          //3、调用Looper.loop(),这样循环就开始执行
          Looper.loop();
      }
  }

可以看到要在自定义线程中使用Handler,就要初始化Handler对象,这个过程分三步:第一步,调用Looper.prepare()方法,此时会创建MessageQueue消息队列,同时会把当前线程和Looper绑定到一起;第二步,创建Handler对象,这个过程我们在上一篇文章《你真的懂Android Handler吗?(一)》中分析过了;第三步,调用Looper.loop()方法,开启循环机器,这一步是我们要分析的重点。

首先我们追踪一下Looper.prepare()源码:

    /** Initialize the current thread as a looper.
      * This gives you a chance to create handlers that then reference
      * this looper, before actually starting the loop. Be sure to call
      * {@link #loop()} after calling this method, and end it by calling
      * {@link #quit()}.
      */
    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }

        //todo 注意这里调用了Looper的构造方法
        sThreadLocal.set(new Looper(quitAllowed));
    }

可以看到在prepare方法中创建了一个Looper对象,并通过调用ThreadLocal的set方法将Looper对象跟当前线程绑定到了一起。

在追一下Loooper的构造方法:

    public final class Looper {

        ......
        
        private Looper(boolean quitAllowed) {
            //创建MessageQueue对象,这是一个消息队列,用来存储消息
            mQueue = new MessageQueue(quitAllowed);
            //获取当前线程,用来和Looper绑定
            mThread = Thread.currentThread();
        }
    }

Looper的构造方法是私有的,而且Looper类是final的,也就是不能被继承,所以我们只能在Looper.prepare()方法中调用构造方法。Looper的构造方法中创建了消息队列,同时也获取了当前线程。

下面我们分析最重点的部分,也就是Looper.loop()方法,去探寻一下Handler到底是如何收到消息的。我们还是先看源码:

public static void loop() {
        //获取当前线程的looper对象
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        //获取looper对象中的消息队列
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);

        boolean slowDeliveryDetected = false;

        //注意:这里使用了无限循环
        for (;;) {
            //调用queue.next()方法可能会阻塞
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
            if (thresholdOverride > 0) {
                slowDispatchThresholdMs = thresholdOverride;
                slowDeliveryThresholdMs = thresholdOverride;
            }
            final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
            final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

            final boolean needStartTime = logSlowDelivery || logSlowDispatch;
            final boolean needEndTime = logSlowDispatch;

            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }

            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            try {
                //调用Handler.dispatchMessage()方法处理消息
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (logSlowDelivery) {
                if (slowDeliveryDetected) {
                    if ((dispatchStart - msg.when) <= 10) {
                        Slog.w(TAG, "Drained");
                        slowDeliveryDetected = false;
                    }
                } else {
                    if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                            msg)) {
                        // Once we write a slow delivery log, suppress until the queue drains.
                        slowDeliveryDetected = true;
                    }
                }
            }
            if (logSlowDispatch) {
                showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
            //进行消息回收
            msg.recycleUnchecked();
        }
    }

上面代码大致包括四个步骤:

1、获取looper中的MessageQueue对象queue;

2、在无限for循环中通过调用queue.next()方法获取一个Message对象msg,注意这个过程可能会阻塞线程;

3、调用msg.target.dispatchMessage(msg)将消息传递给Handler,上一篇文章介绍过,msg.target就是要处理消息的Handler。

4、最后调用msg.recycleUnchecked()方法回收消息。

由此我们解答了第二,第四和第五个问题,handler中的消息是在当前线程通过无限for循环传递的,而不是单独开启一个UI线程执行循环操作,所以也就不涉及线程切换。那么为什么在主线程中无限for循环没有引起ANR呢?我们需要去MessageQueue.next()方法中寻找答案。这个问题我们先放一放,下一篇文章我们将继续探索这个问题。

现在我们要看一看Handler是怎么处理消息的:

    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

    private static void handleCallback(Message message) {
        message.callback.run();
    }

    /**
     * Subclasses must implement this to receive messages.
     */
    public void handleMessage(Message msg) {
    }

因为在Looper.loop()方法中会调用Handler的dispatchMessage()去分发消息,所以上面我们就贴上了这段代码。可以看到如果Message中有CallBack,Handler就会直接调用message.callback.run()方法去处理消息,比如下面这种情况:

new Thread(new Runnable{
    @Override
    public void run() {
        //在自线程中发送消息
        handler.post(new Runnable {
            ....
        });
    }
}).start();

此时Post中的Runnable会被赋值给message中的callback,所以如果要以这种方式发送消息,那么在主线程中创建Handler对象时就不需要实现handleMessage()方法,也不需要传入Runnable对象,因为它们不会被调用。

如果Message的callback为null,那么就需要判断Handler中的mCallback对象是否为空,如果不为空而且mCallback会处理了消息(也就是mCallback.handleMessage()方法返回true),消息就不会传到Handler的的handleMessage()方法中了,否则又Handler的handleMessage()方法处理消息,下面我们举个例子:

class MainActivity : AppCompatActivity() {

    val mHandler: MyOwnHandler = MyOwnHandler(object : Handler.Callback {
        override fun handleMessage(msg: Message?): Boolean {
            if (msg?.what == 1) {
                Log.i("MyOwnHandler", "Handler.Callback.handleMessage")
                return true
            }
            return false
        }
    })

    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContentView(R.layout.activity_main)

        handler_btn_1.setOnClickListener {
            Thread(Runnable { mHandler.sendEmptyMessage(1) }).start()
        }

        handler_btn_2.setOnClickListener {
            Thread(Runnable { mHandler.sendEmptyMessage(2) }).start()
        }
    }

    class MyOwnHandler(callback: Callback) : Handler(callback) {
        private val TAG = "MyOwnHandler"

        override fun handleMessage(msg: Message?) {
            super.handleMessage(msg)
            if (msg?.what == 2) {
                Log.i(TAG, "Handler.handleMessage")
            }
        }
    }
}

上面是个MainActivity,MainActivity中有两个按钮handler_btn_1和handler_btn_2,点击handler_btn_1会发送消息1,点击handler_btn_2会发送消息2。于此同时,我们通过继承Handler,定义了自己的MyOwnHandler,在这个Handler中用Callback去处理消息1,用Handler的handleMessage()方法处理消息2。

下面分别是点击handler_btn_1和点击handler_btn_2打出的log:

Callback.handleMessage()处理了消息1,Handler.handleMessage()处理了消息2。

至此,Handler的消息机制我们大体学完了,消息传递的时序图如下:

你真的懂Android Handler吗?(二)_第1张图片

通过时序图可以看到,发送消息和处理消息的其实是同一个Handler对象。这就引出一个问题,我们在Activity或Fragment中创建的Handler对象如果传给了一个耗时的线程,就有可能会导致内存泄露,因为Handler是Activity或Fragment对象的属性,如果Activity或Fragment对象被回收时,其handler属性还在被长时间运行的线程持有,那么Activity或Fragment对象就无法被回收,就会出现内存泄露,所以我们应该尽可能避免这种情况,如果实在避免不了,可以将自线程中的对Handler的引用改为弱引用,或者将Handler对象改为static的。

最后是Handler消息机制的类图,可以帮我我们梳理这部分代码:

你真的懂Android Handler吗?(二)_第2张图片

你可能感兴趣的:(Android)