我们在学习过程中最容易犯的一个错误就是:看的多,动手的少。特别是对一些项目的整体开发,我们接触的机会就更少了。
一次完整的开发,是最好的学习。它能让你对整个开发流程有完整的认识,对知识也会有极大的巩固。更重要的是,你将学会将理论知识用到实际开发中的方法。
所以无论项目大小,一定要动手去进行开发学习。
这篇文章,就是给那些找不到Python项目开发教程的人,以及不知道Python可以开发什么的人的。
下面的这些项目,大家可以一边动手操作,一边学习,相信会对你的Python技术有不小的提高。
用Python写爬虫很方便,下面的两门课程都和爬虫有关。它们都相当实用,一个关乎出行,一个关乎你的幸福......
「Python3 实现火车票查询工具」很适合用来入门爬虫。你将学习到爬虫最重要的两个步骤——数据的爬取和数据可视化。完成项目后,你只需要敲一行命令就能获得你想要的车票信息,墙裂推荐各位小伙伴学习。
效果如图:
课程简介:
当你想查询一下火车票信息的时候,你还在上 12306 官网吗?或是打开你手机里的 APP?
下面让我们来用 Python 写一个命令行版的火车票查看器, 只要在命令行敲一行命令就能获得你想要的火车票信息!如果你刚掌握了 Python 基础,这将是个不错的小练习。
知识点:
每一个老司机都和这门课相见恨晚。它的标题可能吸引不了你,但请直接看效果:
这是一个很普通的页面,你可以把它换成任何网站。
完成爬取后,效果如下:
8个多G的美女图片,按文件夹、姓名、地点整整齐齐地排列在那,不喜不悲......整个过程20分钟完成,在你自己的环境中会更快。
好了,相信我已经不用再介绍什么了。
课程简介:
本项目通过使用 Python 实现一个淘女郎图片收集爬虫,学习并实践 BeautifulSoup、Selenium Webdriver 及正则表达式等知识。在项目开发过程中采用瀑布流开发模型。
知识点:
这个课比较简单,通过Python分析「 釜山行 」的剧本,绘制出一份人物关系图。你将学到如何用Python分析和提取数据、用Gephi软件使提取的数据可视化。
最终效果图如下:
当然,毕竟是电影,人物关系较少。嫌不过瘾的同学,请下课后拿「 冰与火之歌 」练手。
课程简介:
《釜山行》是一部丧尸灾难片,其人物少、关系简单,非常适合我们学习文本处理。这个项目将介绍共现在关系中的提取,使用python编写代码实现对《釜山行》文本的人物关系提取,最终利用Gephi软件对提取的人物关系绘制人物关系图。
知识点:
这门课非常可怕,在实验楼已经有32462人学过......它非常简单,但效果却十分炫酷,装逼指数爆棚。你将学习到如何用Python的图形处理库,将一张图片转化为字符画。
最终效果图如下:
效果图中的字符为蓝色,你还可以通过调整,增加更多的颜色,使字符画更像原图。
课程简介:
本课程讲述怎样使用 Python 将图片转为字符画。
知识点:
上面的课程教你把图片变得炫酷,这个课程就教你把图片里的信息隐藏。
隐写术到底是什么,这里给大家讲个故事吧:
2012年大众点评和食神网的竞争非常激烈,后者开始大规模地爬取前者的数据,主要是图片。大众点评没有走中国的司法流程,而是直接向APP STORE提交了证据,使食神的APP下架2次。这些证据就是食神爬取的图片,图片中用隐写术嵌入了大众点评的版权信息!
这是如何实现的呢?
下面有一张lenna的图片:
提取该图片的绿色分量:
取绿色分量的最低位,如果是1就设置图片为绿,是0设为黑。
你将看到隐藏的信息:"Steganography"。 大众点评正是利用了这些信息向苹果公司证明了图片的来源,最终保护了公司的利益。
6不6?想不想学?这是课程的效果图:
以看到这两个蓝胖子几乎一模一样,但有一只却真实隐藏了数据在里面。
课程简介:
用Python实现图片隐写术。
知识点:
作为一名程序员,你不可能没听过大数据、人工智能、人脸识别这些名词。这个项目将告诉你,这些名词离你都并不遥远,通过Python,你可以零距离地完成一个人脸识别的项目。
课程简介:
本次课程我们将利用在 基于无监督学习的自编码器实现 课程中介绍过的自编码器,实现对耶鲁大学人脸数据库B+中的人脸图片数据进行降维,再利用降维后的人脸数据进行有监督神经网络学习进行分类器训练,最终达到人脸识别的目的。
知识点:
大家用爬虫爬取数据时,验证码都是绕不过去的一关。这个项目将带你用Python破解验证码的玄机!
效果如图:
课程简介:
生活中,我们在登录微博,邮箱的时候,常常会碰到验证码。在工作时,如果想要爬取一些数据,也会碰到验证码的阻碍。本次试验将带领大家认识验证码的一些特性,并利用 Python 中的 pillow 库完成对验证码的破解。
知识点:
这个课程来自一段租房血泪史(夸张)……
事情是这样的,笔者是接着念大四准备考研,而室友是应届毕业在找工作,说白了就是都没有钱,于是打算合租。因为穷所以不可能找有门店的的中介,只能看看赶集、58、和一些租房APP。
我们需要考虑两个人的通勤范围来选地段,由于对交通的不熟悉,只有选择自己附近的较贵的地段,花了很多时间阅览赶集或者58里的个人房源信息,然而个人房源信息中仍充斥着大量中介,抱着一点希望打了几个电话,得到的回答都是这个价位根本租不到,再高点也租不到(大都与发布的房源信息不符)。
最后终于还是在宿舍关闭前一个星期租到一个性价比还可以的隔断。毕竟隔断还是不方便的,所以打算在室友找到工作后换一个新地方,于是就有了这个租房脚本和课程。
本课程将解决的问题:
效果如下:
课程简介:
在本课程中,我们将编写Python脚本爬取某租房网站的房源信息,利用高德的 js API 在地图上标出房源地点,划出距离工作地点1小时内可到达的范围,附上公交路径规划功能查看不同路径的用时。
知识点:
本实验将使用 Python3 去识别图片是否为色情图片,我们会使用到 PIL 这个图像处理库,会编写算法来划分图像的皮肤区域。其中涉及到Python 3 基础知识,肤色像素检测与皮肤区域划分算法,Pillow及argparse的使用。
最终效果图如下:
课程简介:
本实验将使用 Python3 去识别图片是否为色情图片,我们会使用到 PIL 这个图像处理库,会编写算法来划分图像的皮肤区域。
知识点:
不知道你是否朋友圈被刷屏过NBA的某场比赛进度或者结果?或者你就是一个NBA狂热粉,比赛中的每个进球,抢断或是逆转压哨球都能让你热血沸腾。除去观赏精彩的比赛过程,我们也同样好奇比赛的结果会是如何。因此本节课程,将给同学们展示如何使用nba比赛的以往统计数据,判断每个球队的战斗力,及预测某场比赛中的结果。
我们将基于2015-2016年的NBA常规赛及季后赛的比赛统计数据,预测在当下正在进行的2016-2017常规赛每场赛事的结果。
最终效果图如下:
课程简介:
本课程将利用NBA在2015~2016年的比赛统计数据进行回归模型建立,最终在今年2016~2017的常规赛中预测每场比赛的输赢情况。
知识点:
使用Python快速开发一款PC端玩耍的微信打飞机游戏,基于pygame实现。本课程源自Kill-Console博客:http://www.cnblogs.com/dukeleo/p/3339780.html。本课程难度中等,属于python中等的项目课程,需要有 pygame 和 Python 基础。可以在之前的课程当中先学习一些基础的 pygame 知识然后再学习本课程。
最终效果图如下:
课程简介:
使用Python快速开发一款PC端玩耍的微信打飞机游戏,基于pygame实现。
知识点:
本实验中将介绍在 Linux 桌面环境下使用 Python 及 pygame 快速开发小游戏的方式。可以通过这个游戏入门 pygame 游戏开发。
本课程将会从电影题材分类的例子入手,详细讲述“k-近邻”算法的原理。在这之后,我们将会使用该算法实现手写数字识别系统,书籍教程配套实验练习,帮助您更好地实战。本课程源自图灵教育的《机器学习实战》第2章,感谢图灵教育授权实验楼发布。
课程简介:
本实验将会从电影题材分类的例子入手,详细讲述k-近邻算法的原理。在这之后,我们将会使用该算法实现手写数字识别系统。
知识点: