转载自:http://blog.csdn.net/chenssy/article/details/73521950
ConcurrentHashMap定义了如下几个常量:
// 最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认初始值,必须是2的幕数
private static final int DEFAULT_CAPACITY = 16;
//
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
//
private static final float LOAD_FACTOR = 0.75f;
// 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6;
//
static final int MIN_TREEIFY_CAPACITY = 64;
//
private static final int MIN_TRANSFER_STRIDE = 16;
//
private static int RESIZE_STAMP_BITS = 16;
// 2^15-1,help resize的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 32-16=16,sizeCtl中记录size大小的偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
// forwarding nodes的hash值
static final int MOVED = -1;
// 树根节点的hash值
static final int TREEBIN = -2;
// ReservationNode的hash值
static final int RESERVED = -3;
// 可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
上面是ConcurrentHashMap定义的常量,简单易懂,就不多阐述了。下面介绍ConcurrentHashMap几个很重要的概念。
ConcurrentHashMap的初始化主要由initTable()方法实现,在上面的构造函数中我们可以看到,其实ConcurrentHashMap在构造函数中并没有做什么事,仅仅只是设置了一些参数而已。其真正的初始化是发生在插入的时候,例如put、merge、compute、computeIfAbsent、computeIfPresent操作时。其方法定义如下:
private final Node[] initTable() {
Node[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
//sizeCtl < 0 表示有其他线程在初始化,该线程必须挂起
if ((sc = sizeCtl) < 0)
Thread.yield();
// 如果该线程获取了初始化的权利,则用CAS将sizeCtl设置为-1,表示本线程正在初始化
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
// 进行初始化
try {
if ((tab = table) == null || tab.length == 0) {
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node[] nt = (Node[])new Node,?>[n];
table = tab = nt;
// 下次扩容的大小
sc = n - (n >>> 2); ///相当于0.75*n 设置一个扩容的阈值
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
初始化方法initTable()的关键就在于sizeCtl,该值默认为0,如果在构造函数时有参数传入该值则为2的幂次方。该值如果 < 0,表示有其他线程正在初始化,则必须暂停该线程。如果线程获得了初始化的权限则先将sizeCtl设置为-1,防止有其他线程进入,最后将sizeCtl设置0.75 * n,表示扩容的阈值。
ConcurrentHashMap最常用的put、get操作,ConcurrentHashMap的put操作与HashMap并没有多大区别,其核心思想依然是根据hash值计算节点插入在table的位置,如果该位置为空,则直接插入,否则插入到链表或者树中。但是ConcurrentHashMap会涉及到多线程情况就会复杂很多。我们先看源代码,然后根据源代码一步一步分析:
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
//key、value均不能为null
if (key == null || value == null) throw new NullPointerException();
//计算hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node[] tab = table;;) {
Node f; int n, i, fh;
// table为null,进行初始化工作
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//如果i位置没有节点,则直接插入,不需要加锁
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 有线程正在进行扩容操作,则先帮助扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//对该节点进行加锁处理(hash值相同的链表的头节点),对性能有点儿影响
synchronized (f) {
if (tabAt(tab, i) == f) {
//fh > 0 表示为链表,将该节点插入到链表尾部
if (fh >= 0) {
binCount = 1;
for (Node e = f;; ++binCount) {
K ek;
//hash 和 key 都一样,替换value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
//putIfAbsent()
if (!onlyIfAbsent)
e.val = value;
break;
}
Node pred = e;
//链表尾部 直接插入
if ((e = e.next) == null) {
pred.next = new Node(hash, key,
value, null);
break;
}
}
}
//树节点,按照树的插入操作进行插入
else if (f instanceof TreeBin) {
Node p;
binCount = 2;
if ((p = ((TreeBin)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 如果链表长度已经达到临界值8 就需要把链表转换为树结构
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
//size + 1
addCount(1L, binCount);
return null;
}
按照上面的源码,我们可以确定put整个流程如下:
这里整个put操作已经完成。
public V get(Object key) {
Node[] tab; Node e, p; int n, eh; K ek;
// 计算hash
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 搜索到的节点key与传入的key相同且不为null,直接返回这个节点
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 树
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 链表,遍历
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
ConcurrentHashMap的get操作还是挺简单的,无非就是通过hash来找key相同的节点而已,当然需要区分链表和树形两种情况。先计算hash值;判断table是否为空,如果为空,直接返回null;根据hash值获取table中的Node节点(tabAt(tab, (n - 1) & h)),然后根据链表或者树形方式找到相对应的节点,返回其value值。
ConcurrentHashMap的size()方法我们虽然用得不是很多,但是我们还是很有必要去了解的。ConcurrentHashMap的size()方法返回的是一个不精确的值,因为在进行统计的时候有其他线程正在进行插入和删除操作。
为了更好地统计size,ConcurrentHashMap提供了baseCount、counterCells两个辅助变量和一个CounterCell辅助内部类。
为了更好地统计size,ConcurrentHashMap提供了baseCount、counterCells两个辅助变量和一个CounterCell辅助内部类。
@sun.misc.Contended static final class CounterCell {
volatile long value;
CounterCell(long x) { value = x; }
}
//ConcurrentHashMap中元素个数,但返回的不一定是当前Map的真实元素个数。基于CAS无锁更新
private transient volatile long baseCount;
private transient volatile CounterCell[] counterCells;
这里我们需要清楚CounterCell 的定义
size()方法定义如下:
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
内部调用sunmCount():
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
long sum = baseCount;
if (as != null) {
for (int i = 0; i < as.length; ++i) {
//遍历,所有counter求和
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
sumCount()就是迭代counterCells来统计sum的过程。我们知道put操作时,肯定会影响size(),我们就来看看CouncurrentHashMap是如何处理的。
在put()方法最后会调用addCount()方法,该方法主要做两件事,一件更新baseCount的值,第二件检测是否进行扩容,我们只看更新baseCount部分:
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
// s = b + x,完成baseCount++操作;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
// 多线程CAS发生失败时执行
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
// 检查是否进行扩容
}
x == 1
,如果counterCells == null
,则U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)
,如果并发竞争比较大可能会导致改过程失败,如果失败则最终会调用fullAddCount()
方法。其实为了提高高并发的时候baseCount可见性的失败问题,又避免一直重试,JDK 8 引入了类Striped64,其中LongAdder和DoubleAdder都是基于该类实现的,而CounterCell也是基于Striped64实现的。如果counterCells != null
,且uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x)
也失败了,同样会调用fullAddCount()
方法,最后调用sumCount()
计算s。
其实在1.8中,它不推荐size()方法,而是推崇mappingCount()方法,该方法的定义和size()方法基本一致:
public long mappingCount() {
long n = sumCount();
return (n < 0L) ? 0L : n; // ignore transient negative values
}
当ConcurrentHashMap中table元素个数达到了容量阈值(sizeCtl)时,则需要进行扩容操作。在put操作时最后一个会调用addCount(long x, int check),该方法主要做两个工作:1.更新baseCount;2.检测是否需要扩容操作。如下:
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
// 更新baseCount
//check >= 0 :则需要进行扩容操作
if (check >= 0) {
Node[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
//当前线程是唯一的或是第一个发起扩容的线程 此时nextTable=null
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
transfer()方法为ConcurrentHashMap扩容操作的核心方法。由于ConcurrentHashMap支持多线程扩容,而且也没有进行加锁,所以实现会变得有点儿复杂。整个扩容操作分为两步:
我们先来看看源代码,然后再一步一步分析:
private final void transfer(Node[] tab, Node[] nextTab) {
int n = tab.length, stride;
// 每核处理的量小于16,则强制赋值16
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node[] nt = (Node[])new Node,?>[n << 1]; //构建一个nextTable对象,其容量为原来容量的两倍
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
// 连接点指针,用于标志位(fwd的hash值为-1,fwd.nextTable=nextTab)
ForwardingNode fwd = new ForwardingNode(nextTab);
// 当advance == true时,表明该节点已经处理过了
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node f; int fh;
// 控制 --i ,遍历原hash表中的节点
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
// 用CAS计算得到的transferIndex
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
// 已经完成所有节点复制了
if (finishing) {
nextTable = null;
table = nextTab; // table 指向nextTable
sizeCtl = (n << 1) - (n >>> 1); // sizeCtl阈值为原来的1.5倍
return; // 跳出死循环,
}
// CAS 更扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
// 遍历的节点为null,则放入到ForwardingNode 指针节点
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
// f.hash == -1 表示遍历到了ForwardingNode节点,意味着该节点已经处理过了
// 这里是控制并发扩容的核心
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
// 节点加锁
synchronized (f) {
// 节点复制工作
if (tabAt(tab, i) == f) {
Node ln, hn;
// fh >= 0 ,表示为链表节点
if (fh >= 0) {
// 构造两个链表 一个是原链表 另一个是原链表的反序排列
int runBit = fh & n;
Node lastRun = f;
for (Node p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node(ph, pk, pv, ln);
else
hn = new Node(ph, pk, pv, hn);
}
// 在nextTable i 位置处插上链表
setTabAt(nextTab, i, ln);
// 在nextTable i + n 位置处插上链表
setTabAt(nextTab, i + n, hn);
// 在table i 位置处插上ForwardingNode 表示该节点已经处理过了
setTabAt(tab, i, fwd);
// advance = true 可以执行--i动作,遍历节点
advance = true;
}
// 如果是TreeBin,则按照红黑树进行处理,处理逻辑与上面一致
else if (f instanceof TreeBin) {
TreeBin t = (TreeBin)f;
TreeNode lo = null, loTail = null;
TreeNode hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode p = new TreeNode
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
// 扩容后树节点个数若<=6,将树转链表
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
上面的源码有点儿长,稍微复杂了一些,在这里我们抛弃它多线程环境,我们从单线程角度来看:
死循环遍历节点,知道finished:节点从table复制到nextTable中,支持并发,思路如下:
所有节点复制完成后,则将table指向nextTable,同时更新sizeCtl = nextTable的0.75倍,完成扩容过程。
在多线程环境下,ConcurrentHashMap用两点来保证正确性:ForwardingNode和synchronized。当一个线程遍历到的节点如果是ForwardingNode,则继续往后遍历,如果不是,则将该节点加锁,防止其他线程进入,完成后设置ForwardingNode节点,以便要其他线程可以看到该节点已经处理过了,如此交叉进行,高效而又安全。
在put操作时如果发现fh.hash = -1,则表示正在进行扩容操作,则当前线程会协助进行扩容操作。
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
helpTransfer()方法为协助扩容方法,当调用该方法的时候,nextTable一定已经创建了,所以该方法主要则是进行复制工作。如下:
final Node[] helpTransfer(Node[] tab, Node f) {
Node[] nextTab; int sc;
if (tab != null && (f instanceof ForwardingNode) &&
(nextTab = ((ForwardingNode)f).nextTable) != null) {
int rs = resizeStamp(tab.length);
while (nextTab == nextTable && table == tab &&
(sc = sizeCtl) < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
transfer(tab, nextTab);
break;
}
}
return nextTab;
}
return table;
}