https://github.com/tflearn/tflearn/blob/master/examples/others/recommender_wide_and_deep.py
1 import numpy as np 2 import matplotlib.pyplot as plt 3 import tensorflow as tf 4 import tflearn 5 from tflearn.data_utils import to_categorical 6 #matplotlib inline 7 plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots 8 plt.rcParams['image.interpolation'] = 'nearest' 9 plt.rcParams['image.cmap'] = 'gray' 10 11 # for auto-reloading extenrnal modules 12 # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython 13 #%load_ext autoreload 14 #%autoreload 2 15 16 # 模块1-1 画图 展示样本形式 17 np.random.seed(0) 18 N = 100 # number of points per class 19 D = 2 # dimensionality 20 K = 3 # number of classes 21 X = np.zeros((N*K,D)) 22 y = np.zeros(N*K, dtype='uint8') 23 for j in range(K): 24 ix = range(N*j,N*(j+1)) 25 r = np.linspace(0.0,1,N) # radius 26 t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta 27 X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] 28 y[ix] = j 29 fig = plt.figure() 30 plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral) 31 plt.xlim([-1,1]) 32 plt.ylim([-1,1]) 33 #fig.savefig('spiral_raw.png') 34 35 36 #模块1-2 训练 两层 37 import tensorflow as tf 38 import tflearn 39 from tflearn.data_utils import to_categorical 40 41 with tf.Graph().as_default(): 42 net = tflearn.input_data([None, 2]) 43 net = tflearn.fully_connected(net, 100, activation='relu', weights_init='normal', 44 regularizer='L2', weight_decay=0.001) 45 net = tflearn.fully_connected(net, 3, activation='softmax') 46 sgd = tflearn.SGD(learning_rate=1.0, lr_decay=0.96, decay_step=500) 47 net = tflearn.regression(net, optimizer=sgd, loss='categorical_crossentropy') 48 49 # gd=tf.train.GradientDescentOptimizer(learning_rate=1.0) 50 # net = tflearn.regression(net, optimizer=gd, loss='categorical_crossentropy') 51 52 Y = to_categorical(y, 3) 53 model = tflearn.DNN(net) 54 model.fit(X, Y, show_metric=True, batch_size=len(X), n_epoch=100, snapshot_epoch=False) 55 #print model.predict(X) 56 Z = np.argmax(model.predict(X)) 57 #print Z 58 59 60 61 # 模块1-3 画图展示效果 plot the resulting classifier 62 h = 0.02 63 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 64 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 65 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), 66 np.arange(y_min, y_max, h)) 67 Z = np.argmax(model.predict(np.c_[xx.ravel(), yy.ravel()]), axis=1) 68 Z = Z.reshape(xx.shape) 69 fig = plt.figure() 70 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8) 71 plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral) 72 plt.xlim(xx.min(), xx.max()) 73 plt.ylim(yy.min(), yy.max()) 74 #fig.savefig('spiral_net.png') 75 print("Accuracy: {}%".format(100 * np.mean(y == np.argmax(model.predict(X), axis=1))))
代码2 自己的数据
1 import numpy as np 2 import matplotlib.pyplot as plt 3 import tensorflow as tf 4 import tflearn 5 from tflearn.data_utils import to_categorical 6 import os 7 8 label=[] 9 feature=[] 10 f_tain=open("smp_pub_50d",'r') 11 for line in f_tain.readlines()[0:50000]: 12 samp=eval(line) 13 gender=int(samp[2]) 14 feature1=samp[5:] 15 feature.append(feature1) 16 label.append(gender) 17 f_tain.close() 18 19 X=np.array(feature) 20 Y=np.array(label) 21 22 23 #模块1-2 训练 两层 24 import tensorflow as tf 25 import tflearn 26 from tflearn.data_utils import to_categorical 27 28 with tf.Graph().as_default(): 29 net = tflearn.input_data([None, 50]) 30 net = tflearn.fully_connected(net, 100, activation='relu', weights_init='normal', 31 regularizer='L2', weight_decay=0.001) 32 net = tflearn.fully_connected(net, 2, activation='softmax') 33 sgd = tflearn.SGD(learning_rate=1.0, lr_decay=0.96, decay_step=500) 34 net = tflearn.regression(net, optimizer=sgd, loss='categorical_crossentropy') 35 36 # gd=tf.train.GradientDescentOptimizer(learning_rate=1.0) 37 # net = tflearn.regression(net, optimizer=gd, loss='categorical_crossentropy') 38 39 Y = to_categorical(Y, 2) 40 model = tflearn.DNN(net) 41 model.fit(X, Y, validation_set=0.3,show_metric=True, batch_size=20000, n_epoch=100, snapshot_epoch=False) 42 #print model.predict(X) 43 Z = np.argmax(model.predict(X)) 44 #print Z