高斯混合模型GMM实现 matlab

(1)以下matlab代码实现了高斯混合模型:

function [Alpha, Mu, Sigma] = GMM_EM(Data, Alpha0, Mu0, Sigma0)

%% EM 迭代停止条件

loglik_threshold = 1e-10;

%% 初始化参数

[dim, N] = size(Data);

M = size(Mu0,2);

loglik_old = -realmax;

nbStep = 0;

 

Mu = Mu0;

Sigma = Sigma0;

Alpha = Alpha0;

Epsilon = 0.0001;

while (nbStep < 1200)

  nbStep = nbStep+1;

  %% E-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

  for i=1:M

    % PDF of each point

    Pxi(:,i) = GaussPDF(Data, Mu(:,i), Sigma(:,:,i));         

  end

 

  % 计算后验概率 beta(i|x)

  Pix_tmp = repmat(Alpha,[N 1]).*Pxi;

  Pix = Pix_tmp ./ (repmat(sum(Pix_tmp,2),[1 M])+realmin);

  Beta = sum(Pix);

  %% M-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

  for i=1:M

    % 更新权值

    Alpha(i) = Beta(i) / N;

    % 更新均值

    Mu(:,i) = Data*Pix(:,i) / Beta(i);

    % 更新方差

    Data_tmp1 = Data - repmat(Mu(:,i),1,N);

    Sigma(:,:,i) = (repmat(Pix(:,i)',dim, 1) .* Data_tmp1*Data_tmp1') / Beta(i);

    %% Add a tiny variance to avoid numerical instability

    Sigma(:,:,i) = Sigma(:,:,i) + 1E-5.*diag(ones(dim,1));

  end

 

%  %% Stopping criterion 1 %%%%%%%%%%%%%%%%%%%%

%  for i=1:M

    %Compute the new probability p(x|i)

%    Pxi(:,i) = GaussPDF(Data, Mu(:,i), Sigma(i));

%  end

  %Compute the log likelihood

%  F = Pxi*Alpha';

%  F(find(F<realmin)) = realmin;

%  loglik = mean(log(F));

  %Stop the process depending on the increase of the log likelihood

%  if abs((loglik/loglik_old)-1) < loglik_threshold

%    break;

%  end

%  loglik_old = loglik;

 

  %% Stopping criterion 2 %%%%%%%%%%%%%%%%%%%%

  v = [sum(abs(Mu - Mu0)), abs(Alpha - Alpha0)];

  s = abs(Sigma-Sigma0);

  v2 = 0;

  for i=1:M

    v2 = v2 + det(s(:,:,i));

  end

 

  if ((sum(v) + v2) < Epsilon)

    break;

  end

  Mu0 = Mu;

  Sigma0 = Sigma;

  Alpha0 = Alpha;

end

nbStep

(2)以下代码根据高斯分布函数计算每组数据的概率密度,被GMM_EM函数所调用

function prob = GaussPDF(Data, Mu, Sigma)

%

% 根据高斯分布函数计算每组数据的概率密度 Probability Density Function (PDF)

% 输入 -----------------------------------------------------------------

%   o Data:  D x N ND维数据

%   o Mu:    D x 1 MGauss模型的中心初始值

%   o Sigma: M x M ,每个Gauss模型的方差(假设每个方差矩阵都是对角阵,

%                                   即一个数和单位矩阵的乘积)

% Outputs ----------------------------------------------------------------

%   o prob:  1 x N array representing the probabilities for the

%            N datapoints.    

[dim,N] = size(Data);

Data = Data' - repmat(Mu',N,1);

prob = sum((Data*inv(Sigma)).*Data, 2);

prob = exp(-0.5*prob) / sqrt((2*pi)^dim * (abs(det(Sigma))+realmin));

(3)以下是演示代码demo1.m

% 高斯混合模型参数估计示例 (基于 EM 算法)

% 2010 11 9

[data, mu, var, weight] = CreateSample(M, dim, N);  // 生成测试数据

[Alpha, Mu, Sigma] = GMM_EM(Data, Priors, Mu, Sigma)

(4)以下是测试数据生成函数,为demo1.m所调用:

function [data, mu, var, weight] = CreateSample(M, dim, N)

% 生成实验样本集,由M组正态分布的数据构成

% % GMM模型的原理就是仅根据数据估计参数:每组正态分布的均值、方差,

% 以及每个正态分布函数在GMM的权重alpha

% 在本函数中,这些参数均为随机生成,

%

% 输入

%   M    : 高斯函数个数

%   dim  : 数据维数

%   N    : 数据总个数

% 返回值

%   data : dim-by-N, 每列为一个数据

%   miu  : dim-by-M, 每组样本的均值,由本函数随机生成

%   var  : 1-by-M, 均方差,由本函数随机生成

%   weight: 1-by-M, 每组的权值,由本函数随机生成

% ----------------------------------------------------

%

% 随机生成不同组的方差、均值及权值

weight = rand(1,M);

weight = weight / norm(weight, 1); % 归一化,保证总合为1

var = double(mod(int16(rand(1,M)*100),10) + 1);  % 均方差,取1~10之间,采用对角矩阵

mu = double(round(randn(dim,M)*100));            % 均值,可以有负数

 

for(i = 1: M)

  if (i ~= M)

    n(i) = floor(N*weight(i));

  else

    n(i) = N - sum(n);

  end

end

 

% 以标准高斯分布生成样本值,并平移到各组相应均值和方差

start = 0;

for (i=1:M)

  X = randn(dim, n(i));

  X = X.* var(i) + repmat(mu(:,i),1,n(i));

  data(:,(start+1):start+n(i)) = X;

  start = start + n(i);

end

save('d:\data.mat', 'data');

出处:http://wolfsky2002.blog.163.com/blog/static/10343152010112610221540/

你可能感兴趣的:(matlab)