- 计算机视觉中,Pooling的作用
Wils0nEdwards
计算机视觉人工智能
在计算机视觉中,Pooling(池化)是一种常见的操作,主要用于卷积神经网络(CNN)中。它通过对特征图进行下采样,减少数据的空间维度,同时保留重要的特征信息。Pooling的作用可以归纳为以下几个方面:1.降低计算复杂度与内存需求Pooling操作通过对特征图进行下采样,减少了特征图的空间分辨率(例如,高度和宽度)。这意味着网络需要处理的数据量会减少,从而降低了计算量和内存需求。这对大型神经网络
- 【Sqlite】.NET Framework使用Sqlite的注意事项
主宰者
个人笔记数据库
注意:NuGet引入System.Data.SQLite.Core不要引入System.Data.SQLite注意:局域网共享链接正常链接DataSource=\\BAT-OCV\SqliteDB\batOCV.db;Version=3;Pooling=True;MaxPoolSize=100;局域网链接DataSource=\\\BAT-OCV\SqliteDB\batOCV.db;Versio
- 【PyTorch】常用网络层layers总结
遥感小萌新
python深度学习pytorch人工智能python深度学习
文章目录前言一、ConvolutionLayers二、PoolingLayers三、PaddingLayers总结前言PyTorch中网络搭建主要是通过调用layers实现的,这篇文章总结了putorch中最常用的几个网络层接口及其参数。一、ConvolutionLayerspytorch官方文档介绍了众多卷积层算法,以最新的pytorch2.4为例,针对处理的数据维度不同,有如下卷积层layer
- 【前端面试】事件监听机制&React 的事件系统实现
贾明恣
前端react.js面试
目的React实现了自己的事件系统,主要是为了解决以下几个问题:跨浏览器兼容性:不同的浏览器在处理DOM事件时有不同的实现,React的事件系统抽象了这些差异,提供了一致的API给开发者使用。性能优化:React可以对事件进行池化(Pooling),这意味着事件对象可以在事件处理过程中被重用,减少了内存分配和垃圾回收的开销。合成事件(SyntheticEvents):React使用合成事件来封装所
- 计算机视觉之 GSoP 注意力模块
Midsummer-逐梦
计算机视觉(CV)深度学习机器学习人工智能
计算机视觉之GSoP注意力模块一、简介GSopBlock是一个自定义的神经网络模块,主要用于实现GSoP(GlobalSecond-orderPooling)注意力机制。GSoP注意力机制通过计算输入特征的协方差矩阵,捕捉全局二阶统计信息,从而增强模型的表达能力。原论文:《GlobalSecond-orderPoolingConvolutionalNetworks(arxiv.org)》二、语法和
- CNN+LSTM小目标物体追踪检测实现 完整代码数据可直接运行
计算机毕设论文
计算机毕设实战100例cnn人工智能深度学习小目标物体追踪追踪检测
视频讲解:CNN+LSTM小目标物体追踪检测实现_哔哩哔哩_bilibili项目效果:完整代码:importnumpyasnpimporttensorflowastffromtensorflow.keras.layersimportConv2D,MaxPooling2D,Flatten,LSTM,D
- Java池化思想之一:线程池(Thread Pool)
Sheeppc117525
javaoracle数据库
在Java中,池化结构(PoolingStructure)是一种常用的设计模式,用于管理和重复使用有限的资源。这种结构通过预先创建一定数量的资源对象(如线程、数据库连接、对象等),然后将这些对象集中管理并分配给请求者使用。在使用完毕后,这些资源对象不会被销毁,而是返回到池中,供下一个请求者再次使用。池化结构在Java中广泛应用于各类需要频繁创建和销毁资源的场景中。通过重复使用资源对象,池化结构能够
- Atrous Spatial Pyramid Pooling(ASPP)空洞空间卷积池化金字塔
m0_55576290
深度学习人工智能
文章目录概要整体架构流程演化过程与代码实现概要ASPP主要用于解决语义分割任务中的尺度问题。在语义分割任务中,需要将图像中的每个像素分类到不同的类别中,而不同物体和结构在图像中可能有不同的尺度。传统的卷积神经网络在提取语义信息时,只能通过固定尺度的卷积核进行操作,因此无法很好地捕捉到不同尺度下的上下文信息。ASPP通过在网络中引入多个并行的分支,每个分支使用不同尺度的空洞卷积和池化操作,来捕获不同
- keras 池化层
与AI零距离
池化层又称下采样,是对卷积层的降维处理,常用的池化有最大池化、平均池化。MaxPooling1D一维数据上的池化操作keras.layers.MaxPooling1D(pool_size=2,strides=None,padding='valid')pool_size:池化层窗口大小strides:窗口移动步长padding:valid表示不填充特征边界,same表示填充输入特征以使与原始输入长度
- Convolutional Neural Networks for No-Reference Image Quality Assessment 论文翻译
亚里
论文阅读NR-IQA使用卷积网络进行图像质量评价
ConvolutionalNeuralNetworksforNo-ReferenceImageQualityAssessment论文翻译TranslationAbstract1Introduction2RelatedWork3CNNforNR-IQA3.1NetworkArchitecture3.2LocalNormalization3.3Pooling3.4ReLUNonlinearity3.5
- 《Residual Bi-Fusion Feature Pyramid Network for Accurate Single-shot Object Detection》论文笔记
m_buddy
#GeneralObjectDetectionBi-Fusion
参考代码:无1.概述导读:在检测任务中一般会引入FPN增强在不同尺度下网络的检测性能,但是只通过top-down的FPN网络是很难去重建由于特征图的漂移(水平或是垂直方向运动)在经过pooling操作(pooling不具有平移不变性)带来结果相差很大的问题(特别针对小目标),而且FPN带来的性能提升会在使用较多卷积层之后逐渐被稀释(卷积的平移不变形),进而会导致一些小目标定位性能降低。对此可以通过
- Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
怕狗子的福哥
图网络卷积
ConvolutionalNeuralNetworksonGraphswithFastLocalizedSpectralFiltering1、主要贡献2、算法介绍2.1学习局部化谱filtersk阶近似与ChebNet2.2图池化图粗化快速pooling整个GCN过程1、主要贡献1、谱方法的卷积公式。一种基于谱方法的CNN的形式化表述,基于GSP2、严格的局部化的filters。局部化就是定义了一
- LeetCode-【差分解决区间问题】解题技巧
lanzhihui_
LeetCode差分法leetcode算法
1094.拼车此题关键在于:上车下车先后是固定的,那么可以用差分法,在特定车站上车就+人数,下车就-人数,那么计算,如果出现>capacity就是false;1.所有车站人数初始化为0;2.遍历trips,依次维护上下车各车站人数变化;3.遍历所有车站,累加各个车站人数,出现>>capacity就是false,否则返回true;classSolution(object):defcarPooling
- RFCN 精简讲解
KyleLou
一、前言之前的FasterRCNN对FastRCNN产生regionporposal的问题给出了解决方案,并且在RPN和FastRCNN网络中实现了卷积层共享。但是这种共享仅仅停留在第一卷积部分,RoIpooling及之后的部分没有实现完全共享,可以当做是一种“部分共享”,这导致两个损失:1.信息损失,精度下降。2.由于后续网络部分不共享,导致重复计算全连接层等参数,时间代价过高。(另外还需要多说
- TensorFlow官方入门实操课程-卷积神经网络
尘埃飞舞
人工智能深度学习
知识点卷积:用原始像素数据与过滤器中的值相乘,以后加起来。如下是增强水平特征的过滤器。MaxPooling:每次卷积结束以后用一个MaxPooling用来增强图像的特征。可以看出经过MaxPooling以后的图像,竖直特征增强了很多,像素也小了一半。程序构建卷积神经网络以下是导入库以及数据#设置显卡内存使用率,根据使用率占用importosos.environ["TF_FORCE_GPU_ALLO
- 时序动作定位|使用 ‘注意力机制’ 的弱监督时序动作定位顶会论文理解笔记(Weakly-Supervised Temporal Action Localization)
六个核桃Lu
视频动作定位深度学习人工智能神经网络机器学习计算机视觉
目录WeaklySupervisedActionLocalizationbySparseTemporalPoolingNetwork(CVPR2018)W-TALC:Weakly-supervisedTemporalActivityLocalizationandClassification(ECCV2018)
- 深度学习模型网络疑惑解答
犟小孩
编程相关深度学习网络人工智能
以下是我有疑问,也已经找到答案的问题目录以下是我有疑问,也已经找到答案的问题如果平均池化,进行填充了零,就改变了原本图像的值?当平均池化时发现剩余了怎么办当maxpooling时发现剩余了怎么办BatchNorm1d使用时机卷积的偏置初始值是否为0BatchNorm2d的使用时机模型为什么要初始化如果平均池化,进行填充了零,就改变了原本图像的值?在进行平均池化时,填充零的确可能改变原始图像的值。具
- 【LeetCode每日一题】1109. 航班预订统计&&1094. 拼车 (差分数组)
凭栏听雨客
#LeetCode刻意练习leetcode算法javascript
差分数组差分数组的主要适用场景是频繁对原始数组的某个区间的元素进行增减。一、基本概念:差分数组的定义如下:假设原始数组为arr,差分数组为diff,其中diff[i]=arr[i]-arr[i-1](0capacity){returnfalse;}}returntrue;}优化:有可能出现超载的点都是上车或下车的点,即端点,因此只需要用map保存端点值即可。varcarPooling=functi
- 卷积神经网络
冉然_7236
卷积神经网络基本架构卷积神经网络,主要特点:卷积运算操作。领域:在图像领域,NLP领域的文本分类、软件工程的数据挖掘中软件缺陷预测等问题上获得较优的效果卷积神经网络是一种层次模型,输入为元素数据:RGB图像,原始音频数据主要运算:1.卷积convonlution2.池化pooling3.非线性激活函数non-linearactivationfunction每种运算对应一个层:卷积层,池化层,算法思
- 【AAAI 2021】Document-Level RE with Adaptive Thresholding and Localized Context Pooling
Trouble..
信息抽取事件抽取信息抽取
【AAAI2021】Document-LevelRelationExtractionwithAdaptiveThresholdingandLocalizedContextPooling论文:https://ojs.aaai.org/index.php/AAAI/article/view/17717代码:https://github.com/wzhouad/ATLOPAbstract与句子级关系提取
- basic CNN
chairon
PyTorch深度学习实践pytorch卷积CNNpython深度学习
文章目录回顾卷积神经网络卷积卷积核卷积过程卷积后图像尺寸计算公式:代码padding代码Stride代码MaxPooling代码一个简单的卷积神经网络用卷积神经网络来对MINIST数据集进行分类如何使用GPU代码练习回顾下面这种由线形层构成的网络是全连接网络。对于图像数据而言,卷积神经网络更常用。卷积神经网络通过二维卷积可以实现图像特征的自动提取,卷积输出的称为特征图;特征提取之后可以通过全连接层
- py 第二十八天 requests官方文档:高级用法
520bunana
一、Session对象Session对象允许你能够在跨请求的同时保持某些参数,它也会在同一个Session实例发出的所有请求之间保持cookies,并且在此期间使用urllib3的connectionpooling(连接池)功能。所以,如果你向同一主机发送多个请求,底层的TCP连接将会被重用,从而带来显著的性能提升。Session对象拥有那些主要的RequestsAPI的所有方法。下面实验一下在跨
- 1_图神经网络GNN基础知识学习
Waldocsdn
#图神经网络与可信AI人工智能安全与可信AI神经网络人工智能图神经网络
文章目录对B站前十个视频的补充内容视频链接图神经网络的介绍图神经网络的输入格式图的输入格式:例子:GNNs输入数据的结构GNNS中的MaxPooling“在图神经网络的各个点的特征组合中,对多个点做MaxPooling”这句话是什么意思?举例说明图神经网络中的MaxPooling图的基本组成解释1:解释2:举例说明实例:社交网络GNN的目的——整合特征1.整合特征2.Vertex(ornode)e
- 第二十七周:文献阅读笔记
@默然
笔记
第二十七周:文献阅读笔记摘要AbstractDenseNet网络1.文献摘要2.引言3.ResNets4.DenseBlock5.Poolinglayers6.ImplementationDetails7.Experiments8.FeatureReuse9.代码实现总结摘要DenseNet(密集连接网络)是一种深度学习神经网络架构,由KaimingHe等人在2017年提出。相较于传统的卷积神经网
- [DCN]Deformable Convolutional Networks
Ah丶Weii
学习
文章目录1.Motivation2.Contribution3.DeformableConvolutionalNetworks3.1DeformableConvolution3.2DeformableRoIPooling3.3Position-Sensitive(PS)RoIPooling3.4DeformableConvNets1.Motivation由于CNNs固定的几何结构,它们在建模几何变
- Deformable Convolutional Networks笔记
yanghaoplus
目标检测卷积
目录1.Introduction2.DeformableConvolutionalNetworksDeformableConvolutionDeformableRoIPoolingDeformableConvNets3.UnderstandingDeformableConvNets3.1.InContextofRelatedWorks4.Experiments5.ConclusionDilated
- 【深度学习基础】什么是卷积?为什么要用卷积?
BIT可达鸭
▶深度学习-计算机视觉神经网络卷积计算机视觉深度学习python
什么是卷积?为什么要用卷积?(一)卷积的原理:1.卷积核:2.卷积层参数:2.1卷积核数:2.2卷积核的大小:2.3步长:2.4填充:3.池化层:3.1最大池化层(maxpooling):3.2均值池化层(averagepooling):(二)卷积的作用:1.减少参数量:
- 空洞卷积(扩张卷积dilated convolution)
NeroChang
图像分割空洞卷积图像分割
为什么用空洞卷积?普通的DeepCNN中普遍包含Up-sampling/poolinglayer,导致内部数据结构丢失;空间层级化信息丢失。小物体信息无法重建(假设有四个poolinglayer则任何小于2^4=16pixel的物体信息在理论上将无法重建和分割。)普通卷积过程如下:在这样显著缺陷问题的存在下,语义分割问题一直处在瓶颈期无法再明显提高精度,而dilatedconvolution的设计
- cnn卷积神经网络(计算过程详析)
wanghua609
cnn深度学习神经网络
参考网址百度安全验证https://www.cnblogs.com/skyfsm/p/6790245.html一般的神经网络结构如下CNN卷积神经网络可以被分为许多层,其层级结构一般为•数据输入层/Inputlayer•卷积计算层/CONVlayer•ReLU激励层/ReLUlayer•池化层/Poolinglayer•全连接层/FClayer1.数据输入层该层要做的处理主要是对原始图像数据进行预
- Conv2d dimension orders of Tensorflow and iOS BNNS
Platanuses
conv2dTensorflowx,y:[batch,height,width,depth]core:[height,width,depth_in,depth_out]iOSBNNSx,y:[batch,depth,height,width]core:[depth_out,depth_in,height,width]1stfull-connafterconv2d/poolingTensorflow
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite