关于快速傅里叶变换(FFT)和傅里叶变换的理论知识这里我就不提了,本文主要讲解FFT实现:
之前想找一个FFT代码,在网上找了很多都是有问题的,下面我完善了一个供大家学习交流;
首先粘贴FFT的代码如下:
/******************************************************************************
Compilation: javac FFT.java
Execution: java FFT n
Dependencies: Complex.java
Compute the FFT and inverse FFT of a length n complex sequence
using the radix 2 Cooley-Tukey algorithm.
Bare bones implementation that runs in O(n log n) time. Our goal
is to optimize the clarity of the code, rather than performance.
Limitations
an object type for representing complex numbers and because
it re-allocates memory for the subarray, instead of doing
in-place or reusing a single temporary array)
For an in-place radix 2 Cooley-Tukey FFT, see
https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html
******************************************************************************/
import edu.princeton.cs.algs4.StdDraw;
import edu.princeton.cs.algs4.StdOut;
public class FFT {
// compute the FFT of x[], assuming its length is a power of 2
public static Complex[] fft(Complex[] x) {
int n = x.length;
// base case
if (n == 1) return new Complex[] { x[0] };
// radix 2 Cooley-Tukey FFT
if (n % 2 != 0) {
throw new IllegalArgumentException("n is not a power of 2");
}
// fft of even terms
Complex[] even = new Complex[n/2];
for (int k = 0; k < n/2; k++) {
even[k] = x[2*k];
}
Complex[] q = fft(even);
// fft of odd terms
Complex[] odd = even; // reuse the array
for (int k = 0; k < n/2; k++) {
odd[k] = x[2*k + 1];
}
Complex[] r = fft(odd);
// combine
Complex[] y = new Complex[n];
for (int k = 0; k < n/2; k++) {
double kth = -2 * k * Math.PI / n;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = q[k].plus(wk.times(r[k]));
y[k + n/2] = q[k].minus(wk.times(r[k]));
}
return y;
}
// compute the inverse FFT of x[], assuming its length is a power of 2
public static Complex[] ifft(Complex[] x) {
int n = x.length;
Complex[] y = new Complex[n];
// take conjugate
for (int i = 0; i < n; i++) {
y[i] = x[i].conjugate();
}
// compute forward FFT
y = fft(y);
// take conjugate again
for (int i = 0; i < n; i++) {
y[i] = y[i].conjugate();
}
// divide by n
for (int i = 0; i < n; i++) {
y[i] = y[i].scale(1.0 / n);
}
return y;
}
// compute the circular convolution of x and y
public static Complex[] cconvolve(Complex[] x, Complex[] y) {
// should probably pad x and y with 0s so that they have same length
// and are powers of 2
if (x.length != y.length) {
throw new IllegalArgumentException("Dimensions don't agree");
}
int n = x.length;
// compute FFT of each sequence
Complex[] a = fft(x);
Complex[] b = fft(y);
// point-wise multiply
Complex[] c = new Complex[n];
for (int i = 0; i < n; i++) {
c[i] = a[i].times(b[i]);
}
// compute inverse FFT
return ifft(c);
}
// compute the linear convolution of x and y
public static Complex[] convolve(Complex[] x, Complex[] y) {
Complex ZERO = new Complex(0, 0);
Complex[] a = new Complex[2*x.length];
for (int i = 0; i < x.length; i++) a[i] = x[i];
for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;
Complex[] b = new Complex[2*y.length];
for (int i = 0; i < y.length; i++) b[i] = y[i];
for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;
return cconvolve(a, b);
}
// display an array of Complex numbers to standard output
public static void show(Complex[] x, String title) {
StdOut.println(title);
StdOut.println("-------------------");
for (int i = 0; i < x.length; i++) {
StdOut.println(x[i]);
}
StdOut.println();
}
/***************************************************************************
* Test client and sample execution
*
* % java FFT 4
* x
* -------------------
* -0.03480425839330703
* 0.07910192950176387
* 0.7233322451735928
* 0.1659819820667019
*
* y = fft(x)
* -------------------
* 0.9336118983487516
* -0.7581365035668999 + 0.08688005256493803i
* 0.44344407521182005
* -0.7581365035668999 - 0.08688005256493803i
*
* z = ifft(y)
* -------------------
* -0.03480425839330703
* 0.07910192950176387 + 2.6599344570851287E-18i
* 0.7233322451735928
* 0.1659819820667019 - 2.6599344570851287E-18i
*
* c = cconvolve(x, x)
* -------------------
* 0.5506798633981853
* 0.23461407150576394 - 4.033186818023279E-18i
* -0.016542951108772352
* 0.10288019294318276 + 4.033186818023279E-18i
*
* d = convolve(x, x)
* -------------------
* 0.001211336402308083 - 3.122502256758253E-17i
* -0.005506167987577068 - 5.058885073636224E-17i
* -0.044092969479563274 + 2.1934338938072244E-18i
* 0.10288019294318276 - 3.6147323062478115E-17i
* 0.5494685269958772 + 3.122502256758253E-17i
* 0.240120239493341 + 4.655566391833896E-17i
* 0.02755001837079092 - 2.1934338938072244E-18i
* 4.01805098805014E-17i
*
***************************************************************************/
public static void main(String[] args) {
//int n = Integer.parseInt(args[0]);
int n = 4;
Complex[] x = new Complex[n];
// original data
for (int i = 0; i < n; i++) {
x[i] = new Complex(i, 0);
x[i] = new Complex(-2*Math.random() + 1, 0);
}
show(x, "x");
// FFT of original data
Complex[] y = fft(x);
show(y, "y = fft(x)");
// take inverse FFT
Complex[] z = ifft(y);
show(z, "z = ifft(y)");
// circular convolution of x with itself
Complex[] c = cconvolve(x, x);
show(c, "c = cconvolve(x, x)");
// linear convolution of x with itself
Complex[] d = convolve(x, x);
show(d, "d = convolve(x, x)");
}
}
到这里如果光粘贴此部分代码是无法实现FFT的,因为JAVA本身没得Complex(复数)类,所以我们需要添加一个复数类;
粘贴复数类代码如下:
import java.util.Objects;
public class Complex {
private final double re; // the real part
private final double im; // the imaginary part
// create a new object with the given real and imaginary parts
public Complex(double real, double imag) {
re = real;
im = imag;
}
// return a string representation of the invoking Complex object
public String toString() {
if (im == 0) return re + "";
if (re == 0) return im + "i";
if (im < 0) return re + " - " + (-im) + "i";
return re + " + " + im + "i";
}
// return abs/modulus/magnitude
public double abs() {
return Math.hypot(re, im);
}
// return angle/phase/argument, normalized to be between -pi and pi
public double phase() {
return Math.atan2(im, re);
}
// return a new Complex object whose value is (this + b)
public Complex plus(Complex b) {
Complex a = this; // invoking object
double real = a.re + b.re;
double imag = a.im + b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this - b)
public Complex minus(Complex b) {
Complex a = this;
double real = a.re - b.re;
double imag = a.im - b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this * b)
public Complex times(Complex b) {
Complex a = this;
double real = a.re * b.re - a.im * b.im;
double imag = a.re * b.im + a.im * b.re;
return new Complex(real, imag);
}
// return a new object whose value is (this * alpha)
public Complex scale(double alpha) {
return new Complex(alpha * re, alpha * im);
}
// return a new Complex object whose value is the conjugate of this
public Complex conjugate() {
return new Complex(re, -im);
}
// return a new Complex object whose value is the reciprocal of this
public Complex reciprocal() {
double scale = re*re + im*im;
return new Complex(re / scale, -im / scale);
}
// return the real or imaginary part
public double re() { return re; }
public double im() { return im; }
// return a / b
public Complex divides(Complex b) {
Complex a = this;
return a.times(b.reciprocal());
}
// return a new Complex object whose value is the complex exponential of this
public Complex exp() {
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
}
// return a new Complex object whose value is the complex sine of this
public Complex sin() {
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
}
// return a new Complex object whose value is the complex cosine of this
public Complex cos() {
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
}
// return a new Complex object whose value is the complex tangent of this
public Complex tan() {
return sin().divides(cos());
}
// a static version of plus
public static Complex plus(Complex a, Complex b) {
double real = a.re + b.re;
double imag = a.im + b.im;
Complex sum = new Complex(real, imag);
return sum;
}
// See Section 3.3.
public boolean equals(Object x) {
if (x == null) return false;
if (this.getClass() != x.getClass()) return false;
Complex that = (Complex) x;
return (this.re == that.re) && (this.im == that.im);
}
// See Section 3.3.
public int hashCode() {
return Objects.hash(re, im);
}
// sample client for testing
public static void main(String[] args) {
Complex a = new Complex(5.0, 6.0);
Complex b = new Complex(-3.0, 4.0);
System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("Re(a) = " + a.re());
System.out.println("Im(a) = " + a.im());
System.out.println("b + a = " + b.plus(a));
System.out.println("a - b = " + a.minus(b));
System.out.println("a * b = " + a.times(b));
System.out.println("b * a = " + b.times(a));
System.out.println("a / b = " + a.divides(b));
System.out.println("(a / b) * b = " + a.divides(b).times(b));
System.out.println("conj(a) = " + a.conjugate());
System.out.println("|a| = " + a.abs());
System.out.println("tan(a) = " + a.tan());
}
}
把这两个文件都复制下来运行的话还是会报错,由于上述用到了StdOut类,这是一个数据输出类大家不清楚的可以百度一下,这个需要下载一个jar包,下载地址我粘贴在下方:
链接:https://pan.baidu.com/s/1Vg_iIDiTKhTajQtJEy080g
提取码:2qon
把这个jar包导入文件就可以用了,整个demo代码已上传:https://download.csdn.net/download/systemlsy/10893892
由于最少需要一个积分下载没办法免费分享了。
好了整个代码就完了,大家有需要的自行修改。