JAVA实现FFT算法

JAVA实现FFT算法

关于快速傅里叶变换(FFT)和傅里叶变换的理论知识这里我就不提了,本文主要讲解FFT实现:

之前想找一个FFT代码,在网上找了很多都是有问题的,下面我完善了一个供大家学习交流;

首先粘贴FFT的代码如下:
/******************************************************************************

  • Compilation: javac FFT.java

  • Execution: java FFT n

  • Dependencies: Complex.java

  • Compute the FFT and inverse FFT of a length n complex sequence

  • using the radix 2 Cooley-Tukey algorithm.

  • Bare bones implementation that runs in O(n log n) time. Our goal

  • is to optimize the clarity of the code, rather than performance.

  • Limitations


    • assumes n is a power of 2
    • not the most memory efficient algorithm (because it uses
  •  an object type for representing complex numbers and because
    
  •  it re-allocates memory for the subarray, instead of doing
    
  •  in-place or reusing a single temporary array)
    
  • For an in-place radix 2 Cooley-Tukey FFT, see

  • https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html

******************************************************************************/
import edu.princeton.cs.algs4.StdDraw;
import edu.princeton.cs.algs4.StdOut;
public class FFT {

// compute the FFT of x[], assuming its length is a power of 2
public static Complex[] fft(Complex[] x) {
    int n = x.length;

    // base case
    if (n == 1) return new Complex[] { x[0] };

    // radix 2 Cooley-Tukey FFT
    if (n % 2 != 0) {
        throw new IllegalArgumentException("n is not a power of 2");
    }

    // fft of even terms
    Complex[] even = new Complex[n/2];
    for (int k = 0; k < n/2; k++) {
        even[k] = x[2*k];
    }
    Complex[] q = fft(even);

    // fft of odd terms
    Complex[] odd  = even;  // reuse the array
    for (int k = 0; k < n/2; k++) {
        odd[k] = x[2*k + 1];
    }
    Complex[] r = fft(odd);

    // combine
    Complex[] y = new Complex[n];
    for (int k = 0; k < n/2; k++) {
        double kth = -2 * k * Math.PI / n;
        Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
        y[k]       = q[k].plus(wk.times(r[k]));
        y[k + n/2] = q[k].minus(wk.times(r[k]));
    }
    return y;
}


// compute the inverse FFT of x[], assuming its length is a power of 2
public static Complex[] ifft(Complex[] x) {
    int n = x.length;
    Complex[] y = new Complex[n];

    // take conjugate
    for (int i = 0; i < n; i++) {
        y[i] = x[i].conjugate();
    }

    // compute forward FFT
    y = fft(y);

    // take conjugate again
    for (int i = 0; i < n; i++) {
        y[i] = y[i].conjugate();
    }

    // divide by n
    for (int i = 0; i < n; i++) {
        y[i] = y[i].scale(1.0 / n);
    }

    return y;

}

// compute the circular convolution of x and y
public static Complex[] cconvolve(Complex[] x, Complex[] y) {

    // should probably pad x and y with 0s so that they have same length
    // and are powers of 2
    if (x.length != y.length) {
        throw new IllegalArgumentException("Dimensions don't agree");
    }

    int n = x.length;

    // compute FFT of each sequence
    Complex[] a = fft(x);
    Complex[] b = fft(y);

    // point-wise multiply
    Complex[] c = new Complex[n];
    for (int i = 0; i < n; i++) {
        c[i] = a[i].times(b[i]);
    }

    // compute inverse FFT
    return ifft(c);
}


// compute the linear convolution of x and y
public static Complex[] convolve(Complex[] x, Complex[] y) {
    Complex ZERO = new Complex(0, 0);

    Complex[] a = new Complex[2*x.length];
    for (int i = 0;        i <   x.length; i++) a[i] = x[i];
    for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;

    Complex[] b = new Complex[2*y.length];
    for (int i = 0;        i <   y.length; i++) b[i] = y[i];
    for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;

    return cconvolve(a, b);
}

// display an array of Complex numbers to standard output
public static void show(Complex[] x, String title) {
    StdOut.println(title);
    StdOut.println("-------------------");
    for (int i = 0; i < x.length; i++) {
        StdOut.println(x[i]);
    }
    StdOut.println();
}

/***************************************************************************
* Test client and sample execution
*
* % java FFT 4
* x
* -------------------
* -0.03480425839330703
* 0.07910192950176387
* 0.7233322451735928
* 0.1659819820667019
*
* y = fft(x)
* -------------------
* 0.9336118983487516
* -0.7581365035668999 + 0.08688005256493803i
* 0.44344407521182005
* -0.7581365035668999 - 0.08688005256493803i
*
* z = ifft(y)
* -------------------
* -0.03480425839330703
* 0.07910192950176387 + 2.6599344570851287E-18i
* 0.7233322451735928
* 0.1659819820667019 - 2.6599344570851287E-18i
*
* c = cconvolve(x, x)
* -------------------
* 0.5506798633981853
* 0.23461407150576394 - 4.033186818023279E-18i
* -0.016542951108772352
* 0.10288019294318276 + 4.033186818023279E-18i
*
* d = convolve(x, x)
* -------------------
* 0.001211336402308083 - 3.122502256758253E-17i
* -0.005506167987577068 - 5.058885073636224E-17i
* -0.044092969479563274 + 2.1934338938072244E-18i
* 0.10288019294318276 - 3.6147323062478115E-17i
* 0.5494685269958772 + 3.122502256758253E-17i
* 0.240120239493341 + 4.655566391833896E-17i
* 0.02755001837079092 - 2.1934338938072244E-18i
* 4.01805098805014E-17i
*
***************************************************************************/

public static void main(String[] args) { 
	
    //int n = Integer.parseInt(args[0]);
	int n = 4;
    Complex[] x = new Complex[n];

    // original data
    for (int i = 0; i < n; i++) {
        x[i] = new Complex(i, 0);
        x[i] = new Complex(-2*Math.random() + 1, 0);
    }
    show(x, "x");

    // FFT of original data
    Complex[] y = fft(x);
    show(y, "y = fft(x)");

    // take inverse FFT
    Complex[] z = ifft(y);
    show(z, "z = ifft(y)");

    // circular convolution of x with itself
    Complex[] c = cconvolve(x, x);
    show(c, "c = cconvolve(x, x)");

    // linear convolution of x with itself
    Complex[] d = convolve(x, x);
    show(d, "d = convolve(x, x)"); 
}

}
到这里如果光粘贴此部分代码是无法实现FFT的,因为JAVA本身没得Complex(复数)类,所以我们需要添加一个复数类;

粘贴复数类代码如下:
import java.util.Objects;

public class Complex {

 private final double re;   // the real part
    private final double im;   // the imaginary part

    // create a new object with the given real and imaginary parts
    public Complex(double real, double imag) {
        re = real;
        im = imag;
    }

    // return a string representation of the invoking Complex object
    public String toString() {
        if (im == 0) return re + "";
        if (re == 0) return im + "i";
        if (im <  0) return re + " - " + (-im) + "i";
        return re + " + " + im + "i";
    }

    // return abs/modulus/magnitude
    public double abs() {
        return Math.hypot(re, im);
    }

    // return angle/phase/argument, normalized to be between -pi and pi
    public double phase() {
        return Math.atan2(im, re);
    }

    // return a new Complex object whose value is (this + b)
    public Complex plus(Complex b) {
        Complex a = this;             // invoking object
        double real = a.re + b.re;
        double imag = a.im + b.im;
        return new Complex(real, imag);
    }

    // return a new Complex object whose value is (this - b)
    public Complex minus(Complex b) {
        Complex a = this;
        double real = a.re - b.re;
        double imag = a.im - b.im;
        return new Complex(real, imag);
    }

    // return a new Complex object whose value is (this * b)
    public Complex times(Complex b) {
        Complex a = this;
        double real = a.re * b.re - a.im * b.im;
        double imag = a.re * b.im + a.im * b.re;
        return new Complex(real, imag);
    }

    // return a new object whose value is (this * alpha)
    public Complex scale(double alpha) {
        return new Complex(alpha * re, alpha * im);
    }

    // return a new Complex object whose value is the conjugate of this
    public Complex conjugate() {
        return new Complex(re, -im);
    }

    // return a new Complex object whose value is the reciprocal of this
    public Complex reciprocal() {
        double scale = re*re + im*im;
        return new Complex(re / scale, -im / scale);
    }

    // return the real or imaginary part
    public double re() { return re; }
    public double im() { return im; }

    // return a / b
    public Complex divides(Complex b) {
        Complex a = this;
        return a.times(b.reciprocal());
    }

    // return a new Complex object whose value is the complex exponential of this
    public Complex exp() {
        return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));
    }

    // return a new Complex object whose value is the complex sine of this
    public Complex sin() {
        return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));
    }

    // return a new Complex object whose value is the complex cosine of this
    public Complex cos() {
        return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));
    }

    // return a new Complex object whose value is the complex tangent of this
    public Complex tan() {
        return sin().divides(cos());
    }
    


    // a static version of plus
    public static Complex plus(Complex a, Complex b) {
        double real = a.re + b.re;
        double imag = a.im + b.im;
        Complex sum = new Complex(real, imag);
        return sum;
    }

    // See Section 3.3.
    public boolean equals(Object x) {
        if (x == null) return false;
        if (this.getClass() != x.getClass()) return false;
        Complex that = (Complex) x;
        return (this.re == that.re) && (this.im == that.im);
    }

    // See Section 3.3.
    public int hashCode() {
        return Objects.hash(re, im);
    }

    // sample client for testing
    public static void main(String[] args) {
        Complex a = new Complex(5.0, 6.0);
        Complex b = new Complex(-3.0, 4.0);

        System.out.println("a            = " + a);
        System.out.println("b            = " + b);
        System.out.println("Re(a)        = " + a.re());
        System.out.println("Im(a)        = " + a.im());
        System.out.println("b + a        = " + b.plus(a));
        System.out.println("a - b        = " + a.minus(b));
        System.out.println("a * b        = " + a.times(b));
        System.out.println("b * a        = " + b.times(a));
        System.out.println("a / b        = " + a.divides(b));
        System.out.println("(a / b) * b  = " + a.divides(b).times(b));
        System.out.println("conj(a)      = " + a.conjugate());
        System.out.println("|a|          = " + a.abs());
        System.out.println("tan(a)       = " + a.tan());
    }

}

把这两个文件都复制下来运行的话还是会报错,由于上述用到了StdOut类,这是一个数据输出类大家不清楚的可以百度一下,这个需要下载一个jar包,下载地址我粘贴在下方:
链接:https://pan.baidu.com/s/1Vg_iIDiTKhTajQtJEy080g
提取码:2qon
把这个jar包导入文件就可以用了,整个demo代码已上传:https://download.csdn.net/download/systemlsy/10893892
由于最少需要一个积分下载没办法免费分享了。

好了整个代码就完了,大家有需要的自行修改。

你可能感兴趣的:(JAVA实现FFT算法)