POJ 1077 八数码(康托展开+暴力bfs)

                        Eight

----------------------------------------------------------------------------------------------------------------------------

Description

The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as: 

 1  2  3  4 

 5  6  7  8 

 9 10 11 12 

13 14 15  x 

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle: 

1  2  3  4    1  2  3  4    1  2  3  4    1  2  3  4 

 5  6  7  8    5  6  7  8    5  6  7  8    5  6  7  8 

 9  x 10 12    9 10  x 12    9 10 11 12    9 10 11 12 

13 14 11 15   13 14 11 15   13 14  x 15   13 14 15  x 

           r->           d->           r-> 
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively. 

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and 
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course). 

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three 
arrangement. 

Input

You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle 

 1  2  3 

 x  4  6 

 7  5  8 

is described by this list: 
 1 2 3 x 4 6 7 5 8 
Output

You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.

Sample Input

 2  3  4  1  5  x  7  6  8 

Sample Output

ullddrurdllurdruldr

----------------------------------------------------------------------------------------------------

深夜写此篇的目的,是想告诉自己不要轻易放弃,肝了一天半。

八数码问题,拿到题之后由于求最短方案因此可以用bfs,难点在于如何保存每一个的状态。学长告诉我用康托展开,没听过,于是上链接


大神写的康托展开详解


值得注意的有以下几点:

1. 输入的时候用字符串输入,由于题目数据输入时有空格,所以需要预处理

2. 对于每个节点可以将地图的状态和康托展开值都保存进去,这样避免了逆康托展开

3. 和bfs一样,遍历过的点用v来保存,注意对初始值的处理

4. 输出路径是一个小技巧,这里用两个数组来实现(第一次用字符串复制的方法结果tle)

*5.用数学可以证明3*3的码交换时不改变排列的逆序数的奇偶性,所以可以先判断初末状态的逆序数来判断该问题是否有解


ac代码如下:

#include 
#include 
#include 
#include 
//此题逆向操作,可以在输出的时候少一次逆向输出
using namespace std;
int v[370000];//用于记录展开值状态是否出现过
int pre[370000];//用于保存改状态的上一个状态
char curr[370000];//用于保存改状态的移动路径
char dir[5]="lrud";//移动路径
int step;//记录最短的步数
int ed;//记录最后一次的状态
char st[10]="123456789";//用于存放初始状态(在题中是结束状态)
//声明了一个节点
struct node
{
    int x,y;
    int cantor;//保存康托展开值
    int step;//保存步数
    int map[3][3];//保存地图
};
//阶乘
int fac[]= {1,1,2,6,24,120,720,5040,40320,362880};//阶乘
int dx[4]= {0,0,1,-1};
int dy[4]= {1,-1,0,0};//由于是逆向操作,所以方向相反
//康托展开
int cantor(char arr[])
{
    int i,j,sum1=0,sum2=0;
    for(i=0; i<9; i++)
    {
        sum2=0;
        for(j=i+1; j<9; j++)
        {
            if(arr[j] q;
    node beg;
    beg.x=2,beg.y=2,beg.cantor=cantor(st),beg.step=0;
    int s,t,num=1;
    for(s=0;s<3;s++)//对地图的初始化
    {
        for(t=0;t<3;t++)
        {
            beg.map[s][t]=num++;
        }
    }
    q.push(beg);
    while(!q.empty())
    {
        node cur=q.front();
        q.pop();
        int i;
        for(i=0; i<4; i++)
        {
            node nxt;
            nxt.x=cur.x+dx[i];
            nxt.y=cur.y+dy[i];
            if(nxt.x<0||nxt.x>2||nxt.y<0||nxt.y>2)
            {
                continue;
            }
            char crr[10];
            int j,k,m=0;
            for(j=0; j<3; j++)//将上一个状态的地图复制下来
            {
                for(k=0; k<3; k++)
                {
                    nxt.map[j][k]=cur.map[j][k];
                }
            }
            swap(nxt.map[cur.x][cur.y],nxt.map[nxt.x][nxt.y]);//将现在这个状态的地图做改变
            for(j=0; j<3; j++)//将地图变为字符串
            {
                for(k=0; k<3; k++)
                {
                    crr[m++]=nxt.map[j][k]+'0';
                }
            }
            nxt.cantor=cantor(crr);
            if(v[nxt.cantor]==1)//如果出现过,则返回循环
            {
                continue;
            }
            v[nxt.cantor]=1;
            nxt.step=cur.step+1;
            pre[nxt.cantor]=cur.cantor;//记录上一个状态
            curr[nxt.cantor]=dir[i];//记录这一个状态的路径
            if(nxt.cantor==ans)//如果找到了末状态,则
            {
                int a;
                ed=nxt.cantor;
                for(a=0;a='1'&&brr[i]<='8')
        {
            arr[j]=brr[i];
            drr[j]=arr[j]-'0';
            j++;
        }
        else if(brr[i]=='x')
        {
            arr[j]='9';
            drr[j]=9;
            j++;
        }
    }
    int sum=0;
    for(i=8; i>=0; i--)//记录初状态的逆序数
    {
        for(j=0; jdrr[i]&&drr[j]!=9&&drr[i]!=9)
            {
                sum++;
            }
        }
    }
    if(sum%2==1)
    {
        printf("unsolvable\n");
    }
    else
    {
        memset(v,0,sizeof(v));//初始化v
        v[cantor(st)]=1;
        ans=cantor(arr);
        bfs();
    }
    return 0;
}

末不挂



你可能感兴趣的:(POJ 1077 八数码(康托展开+暴力bfs))