采用SAC-IA(采样一致性初始配准算法)进行粗匹配得到大概位置,
再结合ICP(迭代最近点算法(Iterative Cloest Point, ICP))算法进行精确配准。
绿色是源点云,红色是目标点云,蓝色是配准之后的点云)
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using pcl::NormalEstimation;
using pcl::search::KdTree;
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloud;
//点云可视化
void visualize_pcd(PointCloud::Ptr pcd_src,
PointCloud::Ptr pcd_tgt,
PointCloud::Ptr pcd_final)
{
//int vp_1, vp_2;
// Create a PCLVisualizer object
pcl::visualization::PCLVisualizer viewer("registration Viewer");
//viewer.createViewPort (0.0, 0, 0.5, 1.0, vp_1);
// viewer.createViewPort (0.5, 0, 1.0, 1.0, vp_2);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> src_h(pcd_src, 0, 255, 0);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> tgt_h(pcd_tgt, 255, 0, 0);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> final_h(pcd_final, 0, 0, 255);
viewer.addPointCloud(pcd_src, src_h, "source cloud");
viewer.addPointCloud(pcd_tgt, tgt_h, "tgt cloud");
viewer.addPointCloud(pcd_final, final_h, "final cloud");
//viewer.addCoordinateSystem(1.0);
while (!viewer.wasStopped())
{
viewer.spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
}
//由旋转平移矩阵计算旋转角度
void matrix2angle(Eigen::Matrix4f& result_trans, Eigen::Vector3f& result_angle)
{
double ax, ay, az;
if (result_trans(2, 0) == 1 || result_trans(2, 0) == -1)
{
az = 0;
double dlta;
dlta = atan2(result_trans(0, 1), result_trans(0, 2));
if (result_trans(2, 0) == -1)
{
ay = M_PI / 2;
ax = az + dlta;
}
else
{
ay = -M_PI / 2;
ax = -az + dlta;
}
}
else
{
ay = -asin(result_trans(2, 0));
ax = atan2(result_trans(2, 1) / cos(ay), result_trans(2, 2) / cos(ay));
az = atan2(result_trans(1, 0) / cos(ay), result_trans(0, 0) / cos(ay));
}
result_angle << ax, ay, az;
}
int
main(int argc, char** argv)
{
//加载点云文件
PointCloud::Ptr cloud_src_o(new PointCloud);//原点云,待配准
pcl::io::loadPCDFile("E:\\intern\\SAC-IA-master\\bun000_Structured.pcd", *cloud_src_o);
PointCloud::Ptr cloud_tgt_o(new PointCloud);//目标点云
pcl::io::loadPCDFile("E:\\intern\\SAC-IA-master\\bun045_Structured.pcd", *cloud_tgt_o);
clock_t start = clock();
//去除NAN点
std::vector<int> indices_src; //保存去除的点的索引
pcl::removeNaNFromPointCloud(*cloud_src_o, *cloud_src_o, indices_src);
std::cout << "remove *cloud_src_o nan" << endl;
//下采样滤波
pcl::VoxelGrid<pcl::PointXYZ> voxel_grid;
voxel_grid.setLeafSize(0.012, 0.012, 0.012);
voxel_grid.setInputCloud(cloud_src_o);
PointCloud::Ptr cloud_src(new PointCloud);
voxel_grid.filter(*cloud_src);
std::cout << "down size *cloud_src_o from " << cloud_src_o->size() << "to" << cloud_src->size() << endl;
//pcl::io::savePCDFileASCII("bunny_src_down.pcd", *cloud_src);
//计算表面法线
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne_src;
ne_src.setInputCloud(cloud_src);
pcl::search::KdTree< pcl::PointXYZ>::Ptr tree_src(new pcl::search::KdTree< pcl::PointXYZ>());
ne_src.setSearchMethod(tree_src);
pcl::PointCloud<pcl::Normal>::Ptr cloud_src_normals(new pcl::PointCloud< pcl::Normal>);
ne_src.setRadiusSearch(0.02);
ne_src.compute(*cloud_src_normals);
std::vector<int> indices_tgt;
pcl::removeNaNFromPointCloud(*cloud_tgt_o, *cloud_tgt_o, indices_tgt);
std::cout << "remove *cloud_tgt_o nan" << endl;
pcl::VoxelGrid<pcl::PointXYZ> voxel_grid_2;
voxel_grid_2.setLeafSize(0.01, 0.01, 0.01);
voxel_grid_2.setInputCloud(cloud_tgt_o);
PointCloud::Ptr cloud_tgt(new PointCloud);
voxel_grid_2.filter(*cloud_tgt);
std::cout << "down size *cloud_tgt_o.pcd from " << cloud_tgt_o->size() << "to" << cloud_tgt->size() << endl;
pcl::io::savePCDFileASCII("bunny_tgt_down.pcd", *cloud_tgt);
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne_tgt;
ne_tgt.setInputCloud(cloud_tgt);
pcl::search::KdTree< pcl::PointXYZ>::Ptr tree_tgt(new pcl::search::KdTree< pcl::PointXYZ>());
ne_tgt.setSearchMethod(tree_tgt);
pcl::PointCloud<pcl::Normal>::Ptr cloud_tgt_normals(new pcl::PointCloud< pcl::Normal>);
//ne_tgt.setKSearch(20);
ne_tgt.setRadiusSearch(0.02);
ne_tgt.compute(*cloud_tgt_normals);
//计算FPFH
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh_src;
fpfh_src.setInputCloud(cloud_src);
fpfh_src.setInputNormals(cloud_src_normals);
pcl::search::KdTree<PointT>::Ptr tree_src_fpfh(new pcl::search::KdTree<PointT>);
fpfh_src.setSearchMethod(tree_src_fpfh);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs_src(new pcl::PointCloud<pcl::FPFHSignature33>());
fpfh_src.setRadiusSearch(0.05);
fpfh_src.compute(*fpfhs_src);
std::cout << "compute *cloud_src fpfh" << endl;
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh_tgt;
fpfh_tgt.setInputCloud(cloud_tgt);
fpfh_tgt.setInputNormals(cloud_tgt_normals);
pcl::search::KdTree<PointT>::Ptr tree_tgt_fpfh(new pcl::search::KdTree<PointT>);
fpfh_tgt.setSearchMethod(tree_tgt_fpfh);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs_tgt(new pcl::PointCloud<pcl::FPFHSignature33>());
fpfh_tgt.setRadiusSearch(0.05);
fpfh_tgt.compute(*fpfhs_tgt);
std::cout << "compute *cloud_tgt fpfh" << endl;
//SAC配准
pcl::SampleConsensusInitialAlignment<pcl::PointXYZ, pcl::PointXYZ, pcl::FPFHSignature33> scia;
scia.setInputSource(cloud_src);
scia.setInputTarget(cloud_tgt);
scia.setSourceFeatures(fpfhs_src);
scia.setTargetFeatures(fpfhs_tgt);
//scia.setMinSampleDistance(1);
//scia.setNumberOfSamples(2);
//scia.setCorrespondenceRandomness(20);
PointCloud::Ptr sac_result(new PointCloud);
scia.align(*sac_result);
std::cout << "sac has converged:" << scia.hasConverged() << " score: " << scia.getFitnessScore() << endl;
Eigen::Matrix4f sac_trans;
sac_trans = scia.getFinalTransformation();
std::cout << sac_trans << endl;
//pcl::io::savePCDFileASCII("bunny_transformed_sac.pcd", *sac_result);
clock_t sac_time = clock();
//icp配准
PointCloud::Ptr icp_result(new PointCloud);
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputSource(cloud_src);
icp.setInputTarget(cloud_tgt_o);
//Set the max correspondence distance to 4cm (e.g., correspondences with higher distances will be ignored)
icp.setMaxCorrespondenceDistance(0.04);
// 最大迭代次数
icp.setMaximumIterations(50);
// 两次变化矩阵之间的差值
icp.setTransformationEpsilon(1e-10);
// 均方误差
icp.setEuclideanFitnessEpsilon(0.2);
icp.align(*icp_result, sac_trans);
clock_t end = clock();
cout << "total time: " << (double)(end - start) / (double)CLOCKS_PER_SEC << " s" << endl;
//我把计算法线和点特征直方图的时间也算在SAC里面了
cout << "sac time: " << (double)(sac_time - start) / (double)CLOCKS_PER_SEC << " s" << endl;
cout << "icp time: " << (double)(end - sac_time) / (double)CLOCKS_PER_SEC << " s" << endl;
std::cout << "ICP has converged:" << icp.hasConverged()
<< " score: " << icp.getFitnessScore() << std::endl;
Eigen::Matrix4f icp_trans;
icp_trans = icp.getFinalTransformation();
//cout<<"ransformationProbability"<
std::cout << icp_trans << endl;
//使用创建的变换对未过滤的输入点云进行变换
pcl::transformPointCloud(*cloud_src_o, *icp_result, icp_trans);
//保存转换的输入点云
//pcl::io::savePCDFileASCII("bunny_transformed_sac_ndt.pcd", *icp_result);
//计算误差
Eigen::Vector3f ANGLE_origin;
ANGLE_origin << 0, 0, M_PI / 5;
double error_x, error_y, error_z;
Eigen::Vector3f ANGLE_result;
matrix2angle(icp_trans, ANGLE_result);
error_x = fabs(ANGLE_result(0)) - fabs(ANGLE_origin(0));
error_y = fabs(ANGLE_result(1)) - fabs(ANGLE_origin(1));
error_z = fabs(ANGLE_result(2)) - fabs(ANGLE_origin(2));
cout << "original angle in x y z:\n" << ANGLE_origin << endl;
cout << "error in aixs_x: " << error_x << " error in aixs_y: " << error_y << " error in aixs_z: " << error_z << endl;
//可视化
visualize_pcd(cloud_src_o, cloud_tgt_o, icp_result);
return (0);
}
报错解决:
error C2079: “pcl::KdTreeFLANN::param_radius_”使用未定义的 struct“flann::SearchParams”
PCL和OpenCV库冲突,OpenCV的包含目录中opencv\build\include\opencv2\flann,解决方案是项目属性->VC++目录->包含目录中找到OpenCV的目录删除,或者在属性管理器中删除OpenCV的属性表,只留pcl的属性表。