1. 图像矩
图像中心计算
计算矩的API
具体实现步骤
再找出图像的中心质点后,可以在输出图像中画出来
实现代码:
//图像矩
#include
#include
#include
using namespace cv;
using namespace std;
Mat src,dst,gray_src,temp,dst1;
const char* output_win = "output_img";
RNG rng(12345);
int threshold_v = 100;
int threshold_max = 255;
void Demo_Moments(int, void*);
int main(int argc, char** argv) {
src = imread("C:/Users/18929/Desktop/博客项目/项目图片/06.jpg");
if (src.empty()) {
printf("could not load image");
return -1;
}
namedWindow("input_image", WINDOW_AUTOSIZE);
namedWindow(output_win, WINDOW_AUTOSIZE);
cvtColor(src, gray_src, CV_BGR2GRAY);
//模糊一下,二值化时减少噪点
blur(gray_src, gray_src, Size(3, 3), Point(-1, -1));
imshow("input_image", gray_src);
createTrackbar("Threshold Value", output_win, &threshold_v, threshold_max, Demo_Moments);
Demo_Moments(0, 0);
waitKey(0);
return 0;
}
void Demo_Moments(int, void*) {
Mat canny_output;
vector<vector<Point>> contours;
vector<Vec4i> hoerachy;
Canny(gray_src, canny_output, threshold_v, threshold_v * 2, 3, false);
findContours(canny_output, contours, hoerachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
//存放图像中心矩信息
vector<Moments> contours_moments(contours.size());
vector<Point2f> css(contours.size());
for (size_t i = 0; i < contours.size(); i++)
{
//计算出图像的中心距
contours_moments[i] = moments(contours[i]);
//根据中心距结果,计算图像的中心质点
//static_cast--强制类型转换
css[i] = Point(static_cast<float>(contours_moments[i].m10 / contours_moments[i].m00), static_cast<float>(contours_moments[i].m01 / contours_moments[i].m00));
}
//画出边缘及中心点
Mat drawImg;
src.copyTo(drawImg);
for (size_t i = 0; i < contours.size(); i++)
{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
printf("center point x : %.2f y : %.2f\n", css[i].x, css[i].y);
//计算出图像对象面积及边缘长度
printf("contours %d area: %2f, arc length:%2f\n", i, contourArea(contours[i]), arcLength(contours[i], true));
drawContours(drawImg, contours, i, color, 2, 8, hoerachy, 0, Point(0, 0));
circle(drawImg, css[i], 2, color, 2, 8);
}
imshow(output_win, drawImg);
return;
}
2. 点多边形距离测试
主要时测量一个像素点是否在多边形的什么位置,越靠近轮廓值越小(负值则越大)
openCV代码:
#include
#include
#include
using namespace cv;
using namespace std;
Mat src,dst,gray_src,temp,dst1;
const char* output_win = "output_img";
RNG rng(12345);
int threshold_v = 100;
int threshold_max = 255;
void Demo_Moments(int, void*);
int main(int argc, char** argv) {
//画一个六边形作为轮廓
const int r = 100;
Mat src = Mat::zeros(r * 4, r * 4, CV_8UC1);
vector<Point2f> vert(6);
vert[0] = Point(3 * r / 2, static_cast<int>(1.34 * r));
vert[1] = Point(1 * r , 2*r);
vert[2] = Point(3 * r / 2, static_cast<int>(2.866 * r));
vert[3] = Point(5 * r / 2, static_cast<int>(2.866 * r));
vert[4] = Point(3 * r, 2*r);
vert[5] = Point(5 * r / 2, static_cast<int>(1.34 * r));
for (int i = 0; i < 6; i++)
{
line(src, vert[i], vert[(i + 1) % 6], Scalar(255), 3, 8,0);
}
const char* output_win = "point polygon test demo";
char input_win[] = "input_image";
namedWindow(output_win, WINDOW_AUTOSIZE);
namedWindow(input_win, WINDOW_AUTOSIZE);
imshow(input_win, src);
vector<vector<Point>> contours;
vector<Vec4i> hierachy;
Mat csrc;
src.copyTo(csrc);
findContours(csrc, contours, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
Mat raw_dist = Mat::zeros(csrc.size(), CV_32FC1);
//对csrc图像的每个像素点测试距离
for (int row = 0; row < raw_dist.rows; row++)
{
for (int col = 0; col < raw_dist.cols; col++)
{
//测试距离
double dist = pointPolygonTest(contours[0], Point2f(static_cast<float>(col), static_cast<float>(row)),true);
//将距离值赋到对应位置的像素值
raw_dist.at<float>(row, col) = static_cast<float>(dist);
}
}
double minValue, maxValue;
//在rawdiat中找到最大最小值
minMaxLoc(raw_dist, &minValue, &maxValue, 0, 0, Mat());
//给图像上色并输出
//图像轮廓外上红色,内上蓝色色,计算式首先将像素/最大/小值做归一化,因为最小值为负,取绝对值
//越靠近边缘值越小,所以越来接近满值
Mat drawImg = Mat::zeros(src.size(), CV_8UC3);
for (int row = 0; row < drawImg.rows; row++) {
for (int col = 0; col < drawImg.cols; col++)
{
float dist = raw_dist.at<float>(row, col);
if (dist > 0) {
//轮廓内
drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(1.0 - (dist / maxValue)) * 255);
}
else if(dist<0){
//轮廓外
drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(1.0 - (dist / minValue)) * 255);
}
else {
//轮廓边上
//边缘上白色,因为dist==0
drawImg.at<Vec3b>(row, col)[0] = (uchar)(abs(255 - dist));
drawImg.at<Vec3b>(row, col)[1] = (uchar)(abs(255 - dist));
drawImg.at<Vec3b>(row, col)[2] = (uchar)(abs(255 - dist));
}
}
}
imshow(output_win, drawImg);
waitKey(0);
return 0;
}