FFT算法的完整DSP实现

傅里叶变换或者FFT的理论参考:

[1]http://www.dspguide.com/ch12/2.htm

The Scientist and Engineer's Guide toDigital Signal Processing, By Steven W. Smith, Ph.D.

[2]http://blog.csdn.net/v_JULY_v/article/details/6196862,可当作[1]的中文参考

[3] 任意一本数字信号处理教材,上面都有详细的推导DCT求解转换为FFT求解的过程

[4] TI文档:基于TMS320C64x+DSP的FFT实现。 使用baidu/google可以搜索到。


1. 有关FFT理论的一点小小解释

关于FFT这里只想提到两点:

(1)DFT变换对的表达式(必须记住



—— 称旋转因子


(2)FFT用途——目标只有一个,加速DFT的计算效率。

DFT计算X(k)需要N^2次复数乘法和N(N-1)次复数加法;FFT将N^2的计算量降为。


FFT其实是很难的东西,即使常年在这个领域下打拼的科学家也未必能很好的写出FFT的算法。”——摘自参考上面提供的参考文献[1]

因此,我们不必太过纠结于细节,当明白FFT理论后,将已有的算法挪过来用就OK了,不必为闭着教材写不出FFT而郁闷不堪。


FFT的BASIC程序伪代码如下:


IFFT的BASIC程序伪代码如下(IFFT通过调用FFT计算):


FFT算法的流程图如下图,总结为3过程3循环:

(1)3过程:单点时域分解(倒位序过程) + 单点时域计算单点频谱 + 频域合成

(2)3循环:外循环——分解次数,中循环——sub-DFT运算,内循环——2点蝶形算法


分解过程或者说倒位序的获得参考下图理解:

2. FFT的DSP实现

下面为本人使用C语言实现的FFT及IFFT算法实例,能计算任意以2为对数底的采样点数的FFT,算法参考上面给的流程图。

/*
 * zx_fft.h
 *
 *  Created on: 2013-8-5
 *      Author: monkeyzx
 */

#ifndef ZX_FFT_H_
#define ZX_FFT_H_

typedef float          FFT_TYPE;

#ifndef PI
#define PI             (3.14159265f)
#endif

typedef struct complex_st {
	FFT_TYPE real;
	FFT_TYPE img;
} complex;

int fft(complex *x, int N);
int ifft(complex *x, int N);
void zx_fft(void);

#endif /* ZX_FFT_H_ */

/*
 * zx_fft.c
 *
 * Implementation of Fast Fourier Transform(FFT)
 * and reversal Fast Fourier Transform(IFFT)
 *
 *  Created on: 2013-8-5
 *      Author: monkeyzx
 */

#include "zx_fft.h"
#include 
#include 

/*
 * Bit Reverse
 * === Input ===
 * x : complex numbers
 * n : nodes of FFT. @N should be power of 2, that is 2^(*)
 * l : count by bit of binary format, @l=CEIL{log2(n)}
 * === Output ===
 * r : results after reversed.
 * Note: I use a local variable @temp that result @r can be set
 * to @x and won't overlap.
 */
static void BitReverse(complex *x, complex *r, int n, int l)
{
	int i = 0;
	int j = 0;
	short stk = 0;
	static complex *temp = 0;

	temp = (complex *)malloc(sizeof(complex) * n);
	if (!temp) {
		return;
	}

	for(i=0; i>(j++)) & 0x01;
			if(j

程序在TMS320C6713上实验,主函数中调用zx_fft()函数即可。

FFT的采样点数为128,输入信号的实数域为正弦信号,虚数域为0,数据精度定义FFT_TYPE为float类型,MakeInput和MakeOutput函数分别用于产生输入数据INPUT和输出数据OUTPUT的函数,便于使用CCS 的Graph功能绘制波形图。这里调试时使用CCS v5中的Tools -> Graph功能得到下面的波形图(怎么用自己琢磨,不会的使用CCS 的Help)。

输入波形

FFT算法的完整DSP实现_第1张图片

输入信号的频域幅值表示


FFT运算结果

FFT算法的完整DSP实现_第2张图片

对FFT运算结果逆变换(IFFT)

FFT算法的完整DSP实现_第3张图片


如何检验运算结果是否正确呢?有几种方法:

(1)使用matlab验证,下面为相同情况的matlab图形验证代码

SAMPLE_NODES = 128;
i = 1:SAMPLE_NODES;
x = sin(pi*2*i / SAMPLE_NODES);

subplot(2,2,1); plot(x);title('Inputs');
axis([0 128 -1 1]);

y = fft(x, SAMPLE_NODES);
subplot(2,2,2); plot(abs(y));title('FFT');
axis([0 128 0 80]);

z = ifft(y, SAMPLE_NODES);
subplot(2,2,3); plot(abs(z));title('IFFT');
axis([0 128 0 1]);

FFT算法的完整DSP实现_第4张图片

(2)使用IFFT验证:输入信号的FFT获得的信号再IFFT,则的到的信号与原信号相同

可能大家发现输入信号上面的最后IFFT的信号似乎不同,这是因为FFT和IFFT存在精度截断误差(也叫数据截断噪声,意思就是说,我们使用的float数据类型数据位数有限,没法完全保留原始信号的信息)。因此,IFFT之后是复数(数据截断噪声引入了虚数域,只不过值很小),所以在绘图时使用了计算幅值的方法,

C代码中:

OUTPUT[i] = sqrt(x[i].real*x[i].real + x[i].img*x[i].img)*1024;

matlab代码中:

subplot(2,2,3); plot(abs(z));title('IFFT');

所以IFFT的结果将sin函数的负y轴数据翻到了正y轴。另外,在CCS v5的图形中我们将显示信号的幅度放大了1024倍便于观察,而matlab中没有放大。


你可能感兴趣的:(FFT算法的完整DSP实现)