- 深度学习相关指标工作笔记
Victor Zhong
AI框架深度学习笔记人工智能
这里写目录标题检测指标iou/Gou/Diou/CiouMSE(MeanSquaredError)(均方误差)(回归问题)交叉熵损失函数(CrossEntropyErrorFunction)(分类问题)检测指标iou/Gou/Diou/CiouIntersectionoverUnion(IoU)是目标检测里一种重要的评价值交并比令人遗憾的是IoU无法优化无重叠的bboxes如果用IoU作为loss
- win10安装Ubuntu22.04LTS及深度学习相关配置详细教学
向来痴_
深度学习人工智能
由于之前Ubuntu系统硬盘空间分配的不够,又去看了一下发现扩容很很麻烦。加以发现自己前面安装的深度学习环境版本与实际要用的不符,所以当机立断决定直接重装系统。Ubuntu系统安装参考视频:一看就会!8分钟真机安装【Ubuntu/Windows】双系统_哔哩哔哩_bilibili镜像文件:ubuntu-22.04.4-desktop-amd64.iso按win键搜索磁盘管理打开,压缩卷得到256G
- 深度学习入门:如何从零开始搭建自己的深度学习模型?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介深度学习(DeepLearning)近几年已经成为人们关注的热点话题。从2012年的ImageNet竞赛开始,激起了众多研究者的兴趣,也带来了越来越多的应用场景。随着技术的飞速发展,深度学习已经成为了各个领域最具潜力的技术。作为一名AI科研工作者,了解、掌握深度学习相关知识可以帮助你更好地理解并解决实际问题。本文将全面介绍深度学习的基础知识、技术要点及其应用。文
- 【TensorFlow系列教程第二章】深入理解 TensorFlow 中的张量、计算图与会话
代码简单说
#TensorFlow教程tensorflowneo4j人工智能TensorFlow张量TensorFlow计算图TensorFlow会话
深入理解TensorFlow中的张量、计算图与会话摘要:本文旨在详细介绍TensorFlow中几个核心概念——张量(Tensor)、计算图(ComputationalGraph)以及会话(Session),帮助读者更好地掌握TensorFlow框架,为后续进行深度学习相关的开发与实践奠定基础。一、张量(Tensor)在TensorFlow中,张量(Tensor)类似于NumPy中的数组,是一个多维
- Pytorch使用手册-计算机视觉迁移学习教程(专题十三)
无声之钟
Pytorch入门到精通pytorch计算机视觉迁移学习
在本教程中,你将学习如何使用迁移学习训练一个卷积神经网络进行图像分类。更多关于迁移学习的内容可以参考CS231n课程笔记。引用课程笔记中的内容:实际上,很少有人从头开始训练一个完整的卷积网络(随机初始化),因为拥有足够大数据集的情况相对罕见。相反,通常会在非常大的数据集上(例如ImageNet,它包含120万张图片和1000个类别)预训练一个卷积网络,然后将该网络用于感兴趣任务的初始化或作为固定的
- 转onnx模型学习汇总及TensorRT部署
天亮换季
人工智能自动驾驶持续部署pytorch算法深度学习python
文章目录一写在前面二学习过程三模型转换(三种算法均开源)1.MatrixVT转onnx和TensorRT2.BEVPoolV2转onnx和TensorRT3.BEVDepth转模型四总结一写在前面 深度学习火起来已近十年,于当下的算法岗位而言,多数都在基于深度学习方式或者深度学习相关方法做研发,但算法研发发展至今,对研发人员的要求绝不会限于公开数据集的使用、开源模型的训练、网络模块的堆加等,需要
- 【AI模型】谷歌开源Magenta项目介绍
姑苏老陈
人工智能学习入门人工智能开源音乐AI模型谷歌Magenta项目
本文收录于《人工智能学习入门》专栏。从零基础开始,分享一些人工智能、机器学习、深度学习相关的知识,包括基本概念、技术原理、应用场景以及如何开发实战等等。相信完整学习后会有很多收获。欢迎关注,谢谢!文章目录一、前言二、Magenta的核心目标1.**生成艺术与音乐**2.**探索人机协作**3.**开源社区驱动**三、Magenta技术与功能四、应用场景五、如何开始使用Magenta1.
- 【Bug】 [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed
shanks66
Bugbugssl网络协议
当你在进行深度学习相关操作时,若因缺少本地的CA证书而无法下载资源,下面为你介绍几种解决办法:方法一:更新CA证书在大多数Linux发行版中,你可以使用包管理器来更新CA证书。例如,在基于Debian或Ubuntu的系统中,你可以运行以下命令:sudoapt-getupdatesudoapt-getinstall--reinstallca-certificates在基于RedHat或CentOS的
- 【AI编程】使用DeepSeek AI 编程体验
姑苏老陈
人工智能学习入门AI编程人工智能Deepseek
本文收录于《人工智能学习入门》专栏。从零基础开始,分享一些人工智能、机器学习、深度学习相关的知识,包括基本概念、技术原理、应用场景以及如何开发实战等等。相信完整学习后会有很多收获。欢迎关注,谢谢!文章目录一、前言二、DeepSeekAI编程体验记录2.1完整代码2.2特性说明2.3使用说明2.4注意事项三、总结一、前言最近收到一个开发任务,需要编写一个Python脚本,实现自动从服务器的网盘上把所
- 【DeepSeek + Chatbox】本地局域网多用户协作全流程!从本地部署到高效交互,深度学习任务这样搞就对了~
磕盐小宋的日常
深度学习人工智能
文章目录『概要』『干货分享』『技术细节』『DeepSeek概述』『工作站配置』『所实现的功能』『具体实现流程』『短板与前瞻』『总结』『概要』最近团队在搞深度学习相关的研究,遇到了个头大的问题:设备依赖太重,每个人都要配备高性能硬件才能跑模型。于是我开始思考,有没有办法让大家共享资源,降低设备要求?经过一番调研和实践,我们终于打通了DeepSeek平台+Chatbox可视化界面的全流程局域网协作方案
- 用大模型学大模型02-数学基础 微积分
wyg_031113
人工智能
https://metaso.cn/s/uxPBB9C我正在学习深度学习相关的数学知识,学到了微积分核心概念:导数(尤其是偏导数)、梯度、链式法则;积分与最优化(如梯度下降法的数学推导)给我一个入门级的完整教程和实例好吧,我现在需要帮用户整理一个关于深度学习中微积分核心概念的入门教程和实例。用户提到了导数、偏导数、梯度、链式法则,还有积分和优化比如梯度下降法。我得先理清楚这些概念之间的联系,然后结
- 用大模型学大模型03-数学基础 概率论
wyg_031113
概率论人工智能
https://metaso.cn/s/Jp0OU9w提示词:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例。好的,我现在需要回答用户关于深度学习所需的概率论与统计学入门教程和实例的问题。用户希望得到一个完整的教程和实例,所以我要从我搜索到的资料中整理出相关的知识点和学习路径,并结合实例说明。首先,查看证据中的相关内容。提到花书学习笔记,涵盖了概率论、信
- 深度学习篇---深度学习相关知识点&关键名词含义
Ronin-Lotus
深度学习篇深度学习人工智能机器学习pytorchpaddlepaddlepython
文章目录前言第一部分:相关知识点一、基础铺垫层(必须掌握的核心基础)1.数学基础•线性代数•微积分•概率与统计2.编程基础3.机器学习基础二、深度学习核心层(神经网络与训练机制)1.神经网络基础2.激活函数(ActivationFunction)3.损失函数(LossFunction)4.优化算法(Optimization)5.反向传播(Backpropagation)6.正则化与调优三、进阶模型
- 初入机器学习
辰尘_星启
机器学习人工智能深度学习pythonmxnet
写在前面本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考一切仅供参考概念辨析深度学习:本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型,合理设置初始模型,要对建模对象有比较深刻的认识依赖大量的准确训练样本强化学习:本质是系统,直接将训练得到的模型视作系统本身(激进的像“端到端”)侧重于最大化当前环境下的奖励,最终目标是寻找环
- MixRec: Heterogeneous Graph Collaborative Filtering
UnknownBody
Recommendation人工智能
本文是深度学习相关文章,针对《MixRec:HeterogeneousGraphCollaborativeFiltering》的翻译。MixRec:异构图协同过滤摘要1引言2前言3方法4评估5相关工作6结论摘要对于现代推荐系统来说,使用低维潜在表示来嵌入用户和基于他们观察到的交互的项目已经变得司空见惯。然而,许多现有的推荐模型主要是为粗粒度和同质交互而设计的,这限制了它们在两个关键维度上的有效性。
- 深度学习-笔记1
深度学习神经网络
刚开始接触深度学习相关内容,在这儿做一个笔记:网址:https://gitee.com/paddlepaddle/PaddleNLPpaddle-nlp是一个自然语言处理NLP方面的工具包(代码库)ERNIEERNIE是百度基于BERT改进的预训练大模型,结合了Transformer架构和知识增强机制。整体上可以分为预训练模型层和任务适配层,预训练模型层负责学习通用的语言知识和语义表示,任务适配层
- 第03课:Anaconda 与 Jupyter Notebook
红色石头Will
深度学习PyTorch极简入门人工智能深度学习PyTorch
本文将为大家介绍深度学习实战非常重要的两个工具:Anaconda和JupyterNotebook。Anaconda为什么选择Anaconda我们知道Python是人工智能的首选语言。为了更好、更方便地使用Python来编写深度学习相关程序,可以使用集成开发环境或集成管理系统,最流行的比如PyCharm和Anaconda。本文我推荐使用Anaconda。之所以选择Anaconda,是因为Anacon
- 深度学习相关知识--池化
已经大四了,继续努力
深度学习计算机视觉人工智能
池化概念池化分为最大池化(用的多一些)和平均池化最大池化是选出区域内最大值作为池化后的值,如下图所示:平均池化是选择区域内平均值作为池化后的值,如下图所示:概念很浅显,但是对于刚入门的人来说,很难知道池化到底能干啥,局限性是什么。池化作用:1.减少运算量,这个还好理解,因为数据量变少了,后期计算量肯定也少了2.防止过拟合,因为池化可以把一张大图变成一张小图,但是保留了重要特征,这样使得模型学习时能
- numpy 矩阵乘法_一起学习Python常用模块——numpy
weixin_39636099
numpy矩阵乘法numpy矩阵乘法python对ndarray全体除以一个数python稀疏矩阵乘法python空数组python安装numpy模块
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- python 对ndarray全体除以一个数_一起学习Python常用模块——numpy
weixin_39785814
python对ndarray全体除以一个数python空数组python数组全部平方
关注微信公众号:一个数据人的自留地作者介绍知乎@王多鱼百度的一名推荐算法攻城狮。主要负责商品推荐的召回和排序模型的优化工作。1前言Python在数据科学、机器学习、AI领等域中占据主导地位,目前对于数据分析师和算法工程师来说是必备技能。对于数据分析师来说,应掌握基础语法和数据科学的模块,主要包括:pandas、numpy和机器学习库sklearn等。对于算法工程师来说,还应掌握深度学习相关模块,主
- 阿里云人工智能工程师ACP认证考试:15天备考到通过经验分享
North_D
AI人工智能阿里云人工智能经验分享
阿里云人工智能工程师ACP认证考试:15天备考到通过经验分享机缘:以证促学在工作中,接触并使用深度学习相关技术已经有4、5年左右,具备一些AI相关的理论和经验。随着2023年AIGC的火热,个人的热情被带动起来,有必要系统、全面的对人工智能、机器学习、深度学习进行总结和再学习。那就设立一个可量化的学习目标吧:考个人工智能相关的认证,以证促学。踅摸了一圈,将目标确定为阿里云人工智能工程师ACP认证。
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- cs231n_深度之眼第二次作业
Jie_Cheney
图像分类数据和label分别是什么?图像分类存在的问题与挑战?图像分类数据包括训练集测试集的数据,在有监督的问题中对于训练集数据来说是有label的,而测试集是等待我们去识别它的类别,不具有label。label就是分类标签,比如cifar10这个数据集,待分类的这10类数据我们可以写成1-10,或者0-9这就叫做label。图像分类存在的问题与挑战:光照,角度,形变,遮挡。使用python加载一
- 深度学习相关软件安装与环境配置(windows版本)
欧阳颖
python机器学习神经网络深度学习pycharm
本文介绍了学习Python以及深度学习过程中常用软件的安装与环境配置。目录一.Anaconda1.1Anaconda简介1.2Anaconda安装1.3Anaconda环境配置二.安装GPU版本的PyTorch库三.安装和配置PyCharm3.1Python、PyCharm和Anaconda的关系3.2安装3.3配置一.Anaconda1.1Anaconda简介Anaconda是专门为了方便使用P
- 李沐《动手学深度学习》注意力机制
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能算法pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念李沐《动手学深度学习》卷积
- 向量,矩阵和张量的导数 | 简单的数学
橘子学AI
前段时间看过一些矩阵求导的教程,在看过的资料中,尤其喜欢斯坦福大学CS231n卷积神经网络课程中提到的Erik这篇文章。循着他的思路,可以逐步将复杂的求导过程简化、再简化,直到发现其中有规律的部分。话不多说,一起来看看吧。作者:ErikLearned-Miller翻译:橘子来源:橘子AI笔记(datawitch)本文旨在帮助您学习向量、矩阵和高阶张量(三维或三维以上的数组)的求导方法,以及如何求对
- 【深度学习】讲透深度学习第3篇:TensorFlow张量操作(代码文档已分享)
程序员一诺
python笔记人工智能深度学习深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- 李沐《动手学深度学习》循环神经网络 经典网络模型
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能pytorch神经网络
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念李沐《动手学深度学习》卷积
- 李沐《动手学深度学习》卷积神经网络 经典网络模型
丁希希哇
李沐《动手学深度学习》学习笔记深度学习cnn神经网络算法pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念目录系列文章一、LeNet
- 【深度学习】从0完整讲透深度学习第2篇:TensorFlow介绍和基本操作(代码文档已分享)
程序员一诺
python笔记深度学习人工智能深度学习tensorflow人工智能
本系列文章md笔记(已分享)主要讨论深度学习相关知识。可以让大家熟练掌握机器学习基础,如分类、回归(含代码),熟练掌握numpy,pandas,sklearn等框架使用。在算法上,掌握神经网络的数学原理,手动实现简单的神经网络结构,在应用上熟练掌握TensorFlow框架使用,掌握神经网络图像相关案例。具体包括:TensorFlow的数据流图结构,神经网络与tf.keras,卷积神经网络(CNN)
- ASM系列四 利用Method 组件动态注入方法逻辑
lijingyao8206
字节码技术jvmAOP动态代理ASM
这篇继续结合例子来深入了解下Method组件动态变更方法字节码的实现。通过前面一篇,知道ClassVisitor 的visitMethod()方法可以返回一个MethodVisitor的实例。那么我们也基本可以知道,同ClassVisitor改变类成员一样,MethodVIsistor如果需要改变方法成员,注入逻辑,也可以
- java编程思想 --内部类
百合不是茶
java内部类匿名内部类
内部类;了解外部类 并能与之通信 内部类写出来的代码更加整洁与优雅
1,内部类的创建 内部类是创建在类中的
package com.wj.InsideClass;
/*
* 内部类的创建
*/
public class CreateInsideClass {
public CreateInsideClass(
- web.xml报错
crabdave
web.xml
web.xml报错
The content of element type "web-app" must match "(icon?,display-
name?,description?,distributable?,context-param*,filter*,filter-mapping*,listener*,servlet*,s
- 泛型类的自定义
麦田的设计者
javaandroid泛型
为什么要定义泛型类,当类中要操作的引用数据类型不确定的时候。
采用泛型类,完成扩展。
例如有一个学生类
Student{
Student(){
System.out.println("I'm a student.....");
}
}
有一个老师类
- CSS清除浮动的4中方法
IT独行者
JavaScriptUIcss
清除浮动这个问题,做前端的应该再熟悉不过了,咱是个新人,所以还是记个笔记,做个积累,努力学习向大神靠近。CSS清除浮动的方法网上一搜,大概有N多种,用过几种,说下个人感受。
1、结尾处加空div标签 clear:both 1 2 3 4
.div
1
{
background
:
#000080
;
border
:
1px
s
- Cygwin使用windows的jdk 配置方法
_wy_
jdkwindowscygwin
1.[vim /etc/profile]
JAVA_HOME="/cgydrive/d/Java/jdk1.6.0_43" (windows下jdk路径为D:\Java\jdk1.6.0_43)
PATH="$JAVA_HOME/bin:${PATH}"
CLAS
- linux下安装maven
无量
mavenlinux安装
Linux下安装maven(转) 1.首先到Maven官网
下载安装文件,目前最新版本为3.0.3,下载文件为
apache-maven-3.0.3-bin.tar.gz,下载可以使用wget命令;
2.进入下载文件夹,找到下载的文件,运行如下命令解压
tar -xvf apache-maven-2.2.1-bin.tar.gz
解压后的文件夹
- tomcat的https 配置,syslog-ng配置
aichenglong
tomcathttp跳转到httpssyslong-ng配置syslog配置
1) tomcat配置https,以及http自动跳转到https的配置
1)TOMCAT_HOME目录下生成密钥(keytool是jdk中的命令)
keytool -genkey -alias tomcat -keyalg RSA -keypass changeit -storepass changeit
- 关于领号活动总结
alafqq
活动
关于某彩票活动的总结
具体需求,每个用户进活动页面,领取一个号码,1000中的一个;
活动要求
1,随机性,一定要有随机性;
2,最少中奖概率,如果注数为3200注,则最多中4注
3,效率问题,(不能每个人来都产生一个随机数,这样效率不高);
4,支持断电(仍然从下一个开始),重启服务;(存数据库有点大材小用,因此不能存放在数据库)
解决方案
1,事先产生随机数1000个,并打
- java数据结构 冒泡排序的遍历与排序
百合不是茶
java
java的冒泡排序是一种简单的排序规则
冒泡排序的原理:
比较两个相邻的数,首先将最大的排在第一个,第二次比较第二个 ,此后一样;
针对所有的元素重复以上的步骤,除了最后一个
例题;将int array[]
- JS检查输入框输入的是否是数字的一种校验方法
bijian1013
js
如下是JS检查输入框输入的是否是数字的一种校验方法:
<form method=post target="_blank">
数字:<input type="text" name=num onkeypress="checkNum(this.form)"><br>
</form>
- Test注解的两个属性:expected和timeout
bijian1013
javaJUnitexpectedtimeout
JUnit4:Test文档中的解释:
The Test annotation supports two optional parameters.
The first, expected, declares that a test method should throw an exception.
If it doesn't throw an exception or if it
- [Gson二]继承关系的POJO的反序列化
bit1129
POJO
父类
package inheritance.test2;
import java.util.Map;
public class Model {
private String field1;
private String field2;
private Map<String, String> infoMap
- 【Spark八十四】Spark零碎知识点记录
bit1129
spark
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
- WAS各种脚本作用大全
ronin47
WAS 脚本
http://www.ibm.com/developerworks/cn/websphere/library/samples/SampleScripts.html
无意中,在WAS官网上发现的各种脚本作用,感觉很有作用,先与各位分享一下
获取下载
这些示例 jacl 和 Jython 脚本可用于在 WebSphere Application Server 的不同版本中自
- java-12.求 1+2+3+..n不能使用乘除法、 for 、 while 、 if 、 else 、 switch 、 case 等关键字以及条件判断语句
bylijinnan
switch
借鉴网上的思路,用java实现:
public class NoIfWhile {
/**
* @param args
*
* find x=1+2+3+....n
*/
public static void main(String[] args) {
int n=10;
int re=find(n);
System.o
- Netty源码学习-ObjectEncoder和ObjectDecoder
bylijinnan
javanetty
Netty中传递对象的思路很直观:
Netty中数据的传递是基于ChannelBuffer(也就是byte[]);
那把对象序列化为字节流,就可以在Netty中传递对象了
相应的从ChannelBuffer恢复对象,就是反序列化的过程
Netty已经封装好ObjectEncoder和ObjectDecoder
先看ObjectEncoder
ObjectEncoder是往外发送
- spring 定时任务中cronExpression表达式含义
chicony
cronExpression
一个cron表达式有6个必选的元素和一个可选的元素,各个元素之间是以空格分隔的,从左至右,这些元素的含义如下表所示:
代表含义 是否必须 允许的取值范围 &nb
- Nutz配置Jndi
ctrain
JNDI
1、使用JNDI获取指定资源:
var ioc = {
dao : {
type :"org.nutz.dao.impl.NutDao",
args : [ {jndi :"jdbc/dataSource"} ]
}
}
以上方法,仅需要在容器中配置好数据源,注入到NutDao即可.
- 解决 /bin/sh^M: bad interpreter: No such file or directory
daizj
shell
在Linux中执行.sh脚本,异常/bin/sh^M: bad interpreter: No such file or directory。
分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。
解决:
1)在windows下转换:
利用一些编辑器如UltraEdit或EditPlus等工具
- [转]for 循环为何可恨?
dcj3sjt126com
程序员读书
Java的闭包(Closure)特征最近成为了一个热门话题。 一些精英正在起草一份议案,要在Java将来的版本中加入闭包特征。 然而,提议中的闭包语法以及语言上的这种扩充受到了众多Java程序员的猛烈抨击。
不久前,出版过数十本编程书籍的大作家Elliotte Rusty Harold发表了对Java中闭包的价值的质疑。 尤其是他问道“for 循环为何可恨?”[http://ju
- Android实用小技巧
dcj3sjt126com
android
1、去掉所有Activity界面的标题栏
修改AndroidManifest.xml 在application 标签中添加android:theme="@android:style/Theme.NoTitleBar"
2、去掉所有Activity界面的TitleBar 和StatusBar
修改AndroidManifes
- Oracle 复习笔记之序列
eksliang
Oracle 序列sequenceOracle sequence
转载请出自出处:http://eksliang.iteye.com/blog/2098859
1.序列的作用
序列是用于生成唯一、连续序号的对象
一般用序列来充当数据库表的主键值
2.创建序列语法如下:
create sequence s_emp
start with 1 --开始值
increment by 1 --増长值
maxval
- 有“品”的程序员
gongmeitao
工作
完美程序员的10种品质
完美程序员的每种品质都有一个范围,这个范围取决于具体的问题和背景。没有能解决所有问题的
完美程序员(至少在我们这个星球上),并且对于特定问题,完美程序员应该具有以下品质:
1. 才智非凡- 能够理解问题、能够用清晰可读的代码翻译并表达想法、善于分析并且逻辑思维能力强
(范围:用简单方式解决复杂问题)
- 使用KeleyiSQLHelper类进行分页查询
hvt
sql.netC#asp.nethovertree
本文适用于sql server单主键表或者视图进行分页查询,支持多字段排序。KeleyiSQLHelper类的最新代码请到http://hovertree.codeplex.com/SourceControl/latest下载整个解决方案源代码查看。或者直接在线查看类的代码:http://hovertree.codeplex.com/SourceControl/latest#HoverTree.D
- SVG 教程 (三)圆形,椭圆,直线
天梯梦
svg
SVG <circle> SVG 圆形 - <circle>
<circle> 标签可用来创建一个圆:
下面是SVG代码:
<svg xmlns="http://www.w3.org/2000/svg" version="1.1">
<circle cx="100" c
- 链表栈
luyulong
java数据结构
public class Node {
private Object object;
private Node next;
public Node() {
this.next = null;
this.object = null;
}
public Object getObject() {
return object;
}
public
- 基础数据结构和算法十:2-3 search tree
sunwinner
Algorithm2-3 search tree
Binary search tree works well for a wide variety of applications, but they have poor worst-case performance. Now we introduce a type of binary search tree where costs are guaranteed to be loga
- spring配置定时任务
stunizhengjia
springtimer
最近因工作的需要,用到了spring的定时任务的功能,觉得spring还是很智能化的,只需要配置一下配置文件就可以了,在此记录一下,以便以后用到:
//------------------------定时任务调用的方法------------------------------
/**
* 存储过程定时器
*/
publi
- ITeye 8月技术图书有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的8月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
8月试读活动回顾:
http://webmaster.iteye.com/blog/2102830
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《跨终端Web》
gleams:http