- Pytorch 配置 GPU 环境
听风吹等浪起
深度学习环境配置篇pytorch人工智能python
1、Pytorch深度学习跑代码的时候,因为简单的操作不适合cpu运行,我们更习惯用GPU加速代码。本章将介绍怎么安装pytorch的gpu环境,以及常见的问题关于conda的安装,参考之前文章:深度学习环境配置:Anaconda安装和pip源pytorch官网提供的安装:链接:https://pytorch.org/这里提供的版本都是较新的,电脑的硬件跟不上的话,可以选择之前版本的2、如何查看电
- 深度学习环境配置常见指令
牛哥带你学代码
Python数据分析YOLO目标检测深度学习人工智能
首先打开anacondaprompt,激活对应虚拟环境。导入torch并获取对应版本importtorchtorch.__version__导入torchvision并获取对应版本importtorchvisiontorchvision.__version__检查cuda是否可用torch.cuda.is_available()获取CUDA设备数torch.cuda.device_count()获
- 深度学习手写字符识别:训练模型
DogDaoDao
深度学习深度学习人工智能手写字符识别PyTorchPycharm模型训练模型推理
说明本篇博客主要是跟着B站中国计量大学杨老师的视频实战深度学习手写字符识别。第一个深度学习实例手写字符识别深度学习环境配置可以参考下篇博客,网上也有很多教程,很容易搭建好深度学习的环境。Windows11搭建GPU版本PyTorch环境详细过程数据集手写字符识别用到的数据集是MNIST数据集(MixedNationalInstituteofStandardsandTechnologydatabas
- 1、深度学习环境配置相关下载地址整理(cuda、cudnn、torch、miniconda、pycharm、torchvision等)
小树苗m
环境配置深度学习pycharm人工智能
一、深度学习环境配置相关:1、cuda:https://developer.nvidia.com/cuda-toolkit-archive2、cudnn:https://developer.nvidia.com/rdp/cudnn-archive4、miniconda:https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/?C=S5、pyc
- 深度学习环境配置:Anaconda 安装和 pip 源
听风吹等浪起
深度学习环境配置篇深度学习人工智能
conda是一种通用包管理系统,与pip的使用类似,环境管理则允许用户方便地安装不同版本的python并可以快速切换。Anaconda则是一个打包的集合,里面预装好了conda、某个版本的python、众多packages、科学计算工具等等,就是把很多常用的不常用的库都给你装好了。Miniconda,顾名思义,它只包含最基本的内容——python与conda,以及相关的必须依赖项。对于基于的深度学
- pycharm 配置 conda 新环境
听风吹等浪起
深度学习环境配置篇pycharmcondaide
1.conda创建新环境本章利用pycharm将conda新建的环境载入进去关于conda的下载参考上一章博文:深度学习环境配置:Anaconda安装和pip源首先利用conda新建虚拟环境这里按y确定安装好如下:这里两行命令代表怎么激活和关闭新建的虚拟环境输入condainfo--envs可以看到所有的虚拟环境,如下是刚刚新建立的2.配置pip源激活新建环境输入清华镜像源:pipconfigse
- 深度学习环境配置超详细教程【Anaconda+Pycharm+PyTorch(GPU版)+CUDA+cuDNN】
Enovo_你当像鸟飞往你的山
深度学习pycharmpytorch
在宇宙的浩瀚中,我们是微不足道的,但我们的思维却可以触及无尽的边界。目录关于Anaconda:关于Pycharm:关于Pytorch:关于CUDA:关于Cudnn:一、前言:二、Anaconda安装三、Pycharm安装四、CUDA安装1、查看NVDIA显卡型号2、判断自己应该下载什么版本的cuda3、安装CUDA11.2CUDAtoolkitDownload五、Cudnn安装1、cuDNN下载2
- Docker光速搞定深度学习环境配置!
AAI机器之心
docker深度学习容器人工智能机器学习YOLO运维
你是否还在用压缩包打包你的代码,然后在新的机器重新安装软件,配置你的环境,才能跑起来?特别有这样的情况:诶,在我电脑跑的好好的,怎么这里这么多问题?当项目比较简单的时候,装个Mysql、Nodejs、Anaconda并不是难事,但如果你的环境更多,新机器更多,你还一个个配置,估计你会疯掉。还有就是最恶心的深度学习环境,配置Cuda,Cudnn,Pytorch,TensorFlow,Opencv,G
- rocky9.1 深度学习环境配置
_helen_520
深度学习人工智能
U盘制作启动盘,安装引导;略过;sudofdisk-l安装nvidia驱动教程参考:Rockylinux安装3090+CUDA11.3+pytorch-知乎驱动下载:Nvidia官网下载对应显卡驱动,网址略#确定系统版本uname-auname-r#查看当前电脑的显卡型号lshw-numeric-Cdisplay#命令行搜索集显和独显lspci|grepVGAlspci|grepNVIDIA#关闭
- 深度学习环境配置系列文章(二):Anaconda配置Python和PyTorch
图灵猫-Arwin
深度学习环境配置深度学习pythonpytorch
深度学习环境配置系列文章目录第一章专业名称和配置方案介绍第二章Anaconda配置Python和PyTorch第三章配置VSCode和Jupyter的Python环境第四章配置Windows11和Linux双系统第五章配置Docker深度学习开发环境第二章文章目录深度学习环境配置系列文章目录前言一,Window系统安装Anaconda二,Linux系统安装Anaconda三,Anaconda的快速
- 【Win10/Win11深度学习环境配置记录】——Anaconda+CUDA+CUDNN+PyCharm+Pytorch
weixin_47227105
深度学习人工智能
目录设备版本软件版本对应配置过程Anaconda显卡驱动CUDACUDNNPyCharmPyTorch创建虚拟环境安装pyTorch检查安装是否成功pycharm配置虚拟环境参考博客设备版本win10台式机,带3060TI显卡。win11笔记本,带ti1200显卡。软件版本对应anaconda-python-torch-cudaanaconda高版本可以建低版本的python环境。配置过程Anac
- 自家PC全盘安装Deepin V20.9
鬼马老胖墩
linux
配置:CPU13700KF,主板华硕Z790-P,显卡七彩虹3070,内存2X16G,SSD三星980Pro1T,小米带鱼屏。背景:不经常在家,放在家吃灰一年多了,长时间不利用起来,长久下去不是办法。一、Deepin系统安装最新版本–深度科技社区如何安装–深度科技社区这里没什么难度,用了官方提供的启动盘制作工具,重启后按照提示安装就可以了。二、显卡驱动更换Deepin系统深度学习环境配置指南-知乎
- pytorch深度学习环境配置
纬领网络
深度学习pytorch人工智能
cuda10.2pipinstalltorch==1.10.0+cu102torchvision==0.11.0+cu102torchaudio==0.10.0-fhttps://download.pytorch.org/whl/torch_stable.htmlcuda11.1pipinstalltorch==1.8.0+cu111torchvision==0.9.0+cu111torchaud
- 小白的实验室服务器深度学习环境配置指南
祺呆子
install服务器深度学习
安装nvidia本文在ubuntuserver22.04上实验成功,其他版本仅供参考注意,本文仅适用于ubuntuserver,不需要图形界面,没有对图形界面进行特殊考虑和验证!依赖图形操作界面的读者慎用查看是否安装了gccgcc-v若没有安装,则输入下面的命令,直接把包括gcc在内很多开发工具包一同安装sudoapt-getinstallbuild-essential禁用nouveau驱动编辑/
- 【Docker光速搞定深度学习环境配置!】
GIS_宇宙
深度学习docker深度学习容器
你是否还在用压缩包打包你的代码,然后在新的机器重新安装软件,配置你的环境,才能跑起来?特别有这样的情况:诶,在我电脑跑的好好的,怎么这里这么多问题?当项目比较简单的时候,装个Mysql、Nodejs、Anaconda并不是难事,但如果你的环境更多,新机器更多,你还一个个配置,估计你会疯掉。还有就是最恶心的深度学习环境,配置Cuda,Cudnn,Pytorch,TensorFlow,Opencv,G
- Windows深度学习环境配置
yangtsejin
windows深度学习人工智能算法
Windows深度学习环境配置文章目录Windows深度学习环境配置前言1CUDA和cuDNN1.1下载CUDA和cuDNN1.2安装CUDA和cuDNN1.2.1安装CUDA1.2.2安装cuDNN1.2.3卸载1.3配置系统环境变量2Anaconda2.1安装2.2换源2.2.1conda换源2.2.2pip换源2.3常用命令3安装GPU版pytorch3.1不通过命令安装pytorch3.2
- Ubuntu系统使用快速入门实践(六)——Ubuntu深度学习环境配置(2)
yangtsejin
Ubuntu快速入门实践系列ubuntu深度学习linux
Ubuntu系统使用快速入门实践系列文章下面是Ubuntu系统使用系列文章的总链接,本人发表这个系列的文章链接均收录于此Ubuntu系统使用快速入门实践系列文章总链接下面是专栏地址:Ubuntu系统使用快速入门实践系列文章专栏文章目录Ubuntu系统使用快速入门实践系列文章Ubuntu系统使用快速入门实践系列文章总链接Ubuntu系统使用快速入门实践系列文章专栏前言Ubuntu系统使用快速入门实践
- 深度学习环境配置------windows系统(GPU)------Pytorch
I张小博I
深度学习深度学习windowspytorch
深度学习环境配置------windows系统(GPU)------Pytorch准备工作明确操作系统明确显卡系列CUDA和Cudnn下载与安装1.下载2.安装环境配置过程1.安装Anacoda2.配置环境1)创建一个新的虚拟环境2)pytorch相关库的安装2.安装VScode1)下载VScode2)安装VScode准备工作明确操作系统要想配置深度学习环境首先应确定自己电脑的系统,文章以下都以w
- 深度学习环境配置
shi_jiaye
头部姿态估计python机器学习与数据挖掘深度学习人工智能机器学习
一、Anaconda安装下载:从清华大学开源软件镜像下载镜像网址出现base即为安装成功:检查显卡的驱动是否正确安装:(GPU可以显示出名称)·GPU0是集显=集成显卡是主板自带的显卡。·GPU1是独显即独立显卡,是单独的一张显卡,性能一般会比集显要高。管理环境用conda指令创建一个pytorch环境condacreate-npytorchpython=3.8激活condaactivatepyt
- Anaconda+Cuda+Cudnn+Pytorch(GPU版)+Pycharm+Win11深度学习环境配置
find_starshine
机器学习深度学习pytorchpycharm环境安装
一、准备工作个人电脑配置:RTX4060win11个人配置版本:cuda(11.7)+pytorch(2.0.1)+python(3.9)所需工具:1、python集成开发环境:Anaconda2、CUDA、cuDNN:英伟达提供的针对英伟达显卡的运算平台。用来提升神经网络的运行效率,如果电脑显卡不满足要求也是可以不用安装,使用cpu来进行运算。3、开发工具:PyCharm4、深度学习库:PyTo
- Anaconda+Pytorch(GPU版)深度学习环境配置笔记
xyzAriel
深度学习pytorch人工智能
主要参考以下文章进行配置:https://blog.csdn.net/qq_43757976/article/details/131173301配置版本略有更新,最新版本时间为2023.12.11一、准备工作个人电脑配置:laptopRTX4060win11个人配置版本:cuda(12.1)+pytorch(2.1.0)+python(3.11)所需工具:1、python集成开发环境:Anacon
- 史上最完整的深度学习环境配置教程,亲自踩雷,看必会(包含问题解决)配置Anaconda+Pycharm+Pytorch+Jupyter
A-Plus.
pythonpycharmpytorchjupyter
目录前言一、配置Anaconda二、配置PyCharm三、配置PyTorch四、配置Jupyternotebook前言本人浏览了大量教程,踩过很多的坑,我将配置的过程详细具体的教给大家,只要按照步骤来一定可以配置成功。一、配置Anaconda进入Anaconda官网,点击Download点击Download之后会进入该页面--------------------------------------
- [零基础深度学习环境配置一]基于python 3.7+anaconda 3+cuda 11.1+cuDNN v8.1.1+win10+TITAN XP
舒心远航
深度学习cudawindows
第一步:检查显卡支持的cuda版本1.第一种方法:win+R打开cmd,输入nvidia-smi,我的显卡是nvidiaTITANXP,支持的cuda最高版本是11.0(向下兼容)图1cmd查看显卡支持的cuda版本2.第二种方法:搜索框输入nvidia,出现nvidia控制面板,打开帮助中的系统信息,选择组件,出现cuda版本信息。第二步:官网下载cudaNVIDIADeveloper
- 深度学习环境配置
遇见百分百
OS:Linux:Ubuntu14.04安装:1.Pip(Python2.7.9或以上自带pip):sudoapt-getinstallpyton-pip2.尝试安装scikit-neuralnetwork:需要numpyscipytheanosudopipinstallscikit-neuralnetwork错误:SystemError:cannotcompile"python.h".Perha
- 深度学习环境配置(anaconda+pytorch+cuda)
伍六琪
深度学习与神经网络pythonlinux深度学习pytorch人工智能
简要地汇总了一下配置环境所所用到的教程首先要看好自己要执行代码里,所要求的对应版本需求,再根据具体需求进行下载安装(版本一定要对应,否则就会出现很多错误)前言本文是Ubuntu22.04.2LTS基于linux系统下(一)Anaconda安装教程https://blog.csdn.net/sonapingo/article/details/124165317?ops_request_misc=&r
- 超简单的深度学习环境配置Anaconda+Pytorch+Pycharm+CUDA
王赤脚
学习笔记pytorchpycharmpython
文章目录前言一、安装环境介绍1.安装Anaconda2.安装PyTorch3.配置PyCharm二、详细安装流程1.Anaconda2.PyTorch3.配置Pycharm问题问题一:问题二:前言在学习深度学习,目标检测这些人工智能领域的东西时,绕不开一个东西就是PyTorch。这篇博客就是关于的这个环境的配置,最主要的就是讲一下在配置过程中遇到的问题。一、安装环境介绍1.安装Anaconda安装
- 【Ubuntu新手入门2】深度学习环境配置 Anaconda+Pycharm+PyTorch
是江姑娘呀
环境配置及报错pycharm深度学习ubuntu
@[TOC](【Ubuntu新手入门2】深度学习环境配置Anaconda+Pycharm+pytorch),VScode安装与远程连服务器前言本系统:Ubuntu18.04,anaconda最新,Pycharm最新,PyTorch1.5/1.6/1.0安装参考:Ubuntu系统配置显卡驱动、anaconda、pytorch安装pycharm(先安anaconda再安pycharm)安装pychar
- 深度学习环境配置(Anaconda+pytorch+pycharm+cuda)
ros275229
CFpython环境配置深度学习pytorchpycharm
NVIDIA驱动安装首先查看电脑的显卡版本,步骤为:此电脑右击-->管理-->设备管理器-->显示适配器。就可以看到电脑显卡的版本了。然后按照电脑信息,到地址去安装相应的驱动,Notebooks是笔记本的意思,然后下载即可;安装完之后,按win+r打开命令行窗口,输入以下命令:Anaconda环境的安装与配置具体详细的可以参考这一篇:Anaconda安装与配置-CSDN博客Pytorch环境安装如
- 深度学习环境配置Anaconda+cuda+cudnn+PyTorch——李沐大神《动手学深度学习》环境配置(巨详细,持续迭代)
Beyond_April
笔记PyTorch深度学习深度学习pythonpytorch人工智能
李沐大神《动手学深度学习》安装篇——通用AI、深度学习、机器学习环境Anaconda+cuda+cudnn+Pytorch(手把手教你安装深度学习环境)——这里是GPU+PyTorch版本文章目录李沐大神《动手学深度学习》安装篇——通用AI、深度学习、机器学习环境前言一、安装原理指南二、Anaconda三、cuda+cudnn1.cuda2.cudnn四、PyTorch五、jupyternoteb
- 李沐动手学深度学习环境配置(Win)
MhjGreat
深度学习python人工智能
环境配置(Win)一、安装MinicondaMiniconda—condadocumentation更改镜像源condanotepad.condarcpypipipconfigsetglobal.index-urlhttps://mirror.sjtu.edu.cn/pypi/web/simple二、安装Githttps://ghproxy.com/https://github.com/git-f
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><