2014编程之美初赛第一场

题目1 : 焦距

时间限制: 2000ms
单点时限: 1000ms
内存限制: 256MB

描述

一般来说,我们采用针孔相机模型,也就是认为它用到的是小孔成像原理。

在相机坐标系下,一般来说,我们用到的单位长度,不是“米”这样的国际单位,而是相邻像素的长度。而焦距在相机坐标系中的大小,是在图像处理领域的一个非常重要的物理量。

假设我们已经根据相机参数,得到镜头的物理焦距大小(focal length),和相机胶片的宽度(CCD width),以及照片的横向分辨率(image width),则具体计算公式为:

Focal length in pixels = (image width in pixels) * (focal length on earth) / (CCD width on earth)

比如说对于Canon PowerShot S100, 带入公式得

Focal length in pixels = 1600 pixels * 5.4mm / 5.27mm = 1639.49 pixels

现在,请您写一段通用的程序,来求解焦距在相机坐标系中的大小。


输入

多组测试数据。首先是一个正整数T,表示测试数据的组数。

每组测试数据占一行,分别为

镜头的物理焦距大小(focal length on earth)

相机胶片的宽度(CCD width on earth)

照片的横向分辨率大小(image width in pixels),单位为px。

之间用一个空格分隔。


输出

每组数据输出一行,格式为“Case X: Ypx”。 X为测试数据的编号,从1开始;Y为焦距在相机坐标系中的大小(focallength in pixels),保留小数点后2位有效数字,四舍五入取整。


数据范围

对于小数据:focal length on earth和CCD width on earth单位都是毫米(mm)

对于大数据:长度单位还可能为米(m), 分米(dm), 厘米(cm), 毫米(mm), 微米(um),纳米(nm)



样例输入
2
5.4mm 5.27mm 1600px
5400um 0.00527m 1600px
样例输出
Case 1: 1639.47px
Case 2: 1639.47px



题目2 : 树

时间限制: 4000ms
单点时限: 2000ms
内存限制: 256MB

描述

有一个N个节点的树,其中点1是根。初始点权值都是0。

一个节点的深度定义为其父节点的深度+1,。特别的,根节点的深度定义为1。

现在需要支持一系列以下操作:给节点u的子树中,深度在l和r之间的节点的权值(这里的深度依然从整个树的根节点开始计算),都加上一个数delta。

问完成所有操作后,各节点的权值是多少。


为了减少巨大输出带来的开销,假设完成所有操作后,各节点的权值是answer[1..N],请你按照如下方式计算出一个Hash值(请选择合适的数据类型,注意避免溢出的情况)。最终只需要输出这个Hash值即可。


MOD =1000000007; // 10^9 + 7

MAGIC= 12347;

Hash =0;

For i= 1 to N do

   Hash = (Hash * MAGIC + answer[i]) mod MOD;

EndFor


输入

第一行一个整数T (1 ≤ T ≤ 5),表示数据组数。

接下来是T组输入数据,测试数据之间没有空行。

每组数据格式如下:

第一行一个整数N (1 ≤ N ≤ 105),表示树的节点总数。

接下来N - 1行,每行1个数,a (1 ≤ a ≤ N),依次表示2..N节点的父亲节点的编号。

接下来一个整数Q(1 ≤ Q ≤ 105),表示操作总数。

接下来Q行,每行4个整数,u, l, r, delta (1 ≤ u ≤ N, 1 ≤ l ≤ r ≤ N, -109 ≤ delta ≤ 109),代表一次操作。


输出

对每组数据,先输出一行“Case x: ”,x表示是第几组数据,然后接这组数据答案的Hash值。


数据范围


小数据:1 ≤ N, Q ≤ 1000

大数据:1 ≤ N, Q ≤ 105


样例解释

点1的子树中有1,2,3三个节点。其中深度在2-3之间的是点2和点3。

点2的子树中有2,3两个节点。其中没有深度为1的节点。

所以,执行完所有操作之后,只有2,3两点的权值增加了1。即答案是0 1 1。再计算对应的Hash值即可。




样例输入
1
3
1
2
2
1 2 3 1
2 1 1 1
样例输出
Case 1: 12348



题目3 : 活动中心

时间限制: 12000ms
单点时限: 6000ms
内存限制: 256MB

描述

A市是一个高度规划的城市,但是科技高端发达的地方,居民们也不能忘记运动和锻炼,因此城市规划局在设计A市的时候也要考虑为居民们建造一个活动中心,方便居住在A市的居民们能随时开展运动,锻炼强健的身心。

城市规划局希望活动中心的位置满足以下条件:

1. 到所有居住地的总距离最小。

2. 为了方便活动中心的资源补给和其他器材的维护,活动中心必须建设在A市的主干道上。


为了简化问题,我们将A市摆在二维平面上,城市的主干道看作直角坐标系平的X轴,城市中所有的居住地都可以看成二维平面上的一个点。

现在,A市的城市规划局希望知道活动中心建在哪儿最好。


输入

第一行包括一个数T,表示数据的组数。

接下来包含T组数据,每组数据的第一行包括一个整数N,表示A市共有N处居住地

接下来N行表示每处居住地的坐标。


输出

对于每组数据,输出一行“Case X: Y”,其中X表示每组数据的编号(从1开始),Y表示活动中心的最优建造位置。我们建议你的输出保留Y到小数点后6位或以上,任何与标准答案的绝对误差或者相对误差在10-6以内的结果都将被视为正确。


数据范围

小数据:1 ≤ T ≤ 1000, 1 ≤ N ≤ 10

大数据:1 ≤ T ≤ 10, 1 ≤ N ≤ 105

对于所有数据,坐标值都是整数且绝对值都不超过106



样例解释

样例1:活动中心的最优建造位置为(1.678787, 0)



样例输入
1
3
1 1
2 2
3 3
样例输出
Case 1: 1.678787


你可能感兴趣的:(【编程之美】)