实现Serializable接口的目的是为类可持久化,比如在网络传输或本地存储,为系统的分布和异构部署提供先决条件。若没有序列化,现在我们所熟悉的远程调用,对象数据库都不可能存在,
serialVersionUID适用于java序列化机制。简单来说,JAVA序列化的机制是通过判断类的serialVersionUID来验证的版本一致的。在进行反序列化时,JVM会把传来的字节流中的serialVersionUID于本地相应实体类的serialVersionUID进行比较。如果相同说明是一致的,可以进行反序列化,否则会出现反序列化版本一致的异常,即是InvalidCastException。
具体序列化的过程是这样的:序列化操作时会把系统当前类的serialVersionUID写入到序列化文件中,当反序列化时系统会自动检测文件中的serialVersionUID,判断它是否与当前类中的serialVersionUID一致。如果一致说明序列化文件的版本与当前类的版本是一样的,可以反序列化成功,否则就失败;
serialVersionUID有两种显示的生成方式:
一是默认的1L,比如:private static final long serialVersionUID = 1L;
二是根据包名,类名,继承关系,非私有的方法和属性,以及参数,返回值等诸多因子计算得出的,极度复杂生成的一个64位的哈希字段。基本上计算出来的这个值是唯一的。比如:private static final long serialVersionUID = xxxxL;
注意:显示声明serialVersionUID可以避免对象不一致,
当一个类实现类Serializable接口,如果没有显示定义serialVersionUIDEclipse会自动给出相应的提醒;面对这种情况,我们只需要在Eclipse中点击类的warning图标,Eclipse就会自动给出两种生成方式。如果不想定义,在Eclipse的设置中也可以把它关掉的,设置如下:
Window ==> Preferences ==> Java ==> Compiler ==> Error/Warnings ==> Potential programming problems
将Serializable class without serialVersionUID的warning改成ignore即可。
当实现java.io.Serializable接口中没有显示的定义serialVersionUID变量的时候,JAVA序列化机制会根据Class自动生成一个serialVersionUID作序列化版本比较用,这种情况下,如果Class文件(类名,方法明等)没有发生变化(增加空格,换行,增加注释等等),就算再编译多次,serialVersionUID也不会变化的。
如果我们不希望通过编译来强制划分软件版本,即实现序列化接口的实体能够兼容先前版本,就需要显示的定义一个serialVersionUID,类型为long的变量。不修改这个变量值的序列化实体,都可以相互进行序列化和反序列化。
也就是说:
因为若不显式定义 serialVersionUID 的值,Java 会根据类细节自动生成 serialVersionUID 的值,如果对类的源代码作了修改,再重新编译,新生成的类文件的serialVersionUID的取值有可能也会发生变化。类的serialVersionUID的默认值完全依赖于Java编译器的实现,对于同一个类,用不同的Java编译器编译,也有可能会导致不同的serialVersionUID。所以 ide 才会提示声明 serialVersionUID 的值。
下面用代码说明一下serialVersionUID在应用中常见的几种情况。
(1)序列化实体类
package com.example.demo.entity.serializable;
import java.io.Serializable;
public class Persion implements Serializable {
private static final long serialVersionUID = 4359709211352400087L;
public Long id;
public String name;
public final String userName;
public Persion(Long id, String name) {
this.id = id;
this.name = name;
userName = "dddbbb";
}
public String toString() {
return id.toString() + "--" + name.toString();
}
}
(2)序列化功能:
package com.example.demo.entity.serializable;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
public class SerialTest {
public static void main(String[] args) {
Persion p = new Persion(1L, "陈俊生");
System.out.println("person Seria:" + p);
try {
FileOutputStream fos = new FileOutputStream("Persion.txt");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(p);
oos.flush();
oos.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
(3)反序列化功能
package com.example.demo.entity.serializable;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.ObjectInputStream;
public class DeserialTest {
public static void main(String[] args) {
Persion p;
try {
FileInputStream fis = new FileInputStream("Persion.txt");
ObjectInputStream ois = new ObjectInputStream(fis);
p = (Persion) ois.readObject();
ois.close();
System.out.println(p.toString());
System.out.println(p.userName);
} catch (IOException | ClassNotFoundException e) {
e.printStackTrace();
}
}
}
情况一:Persion类序列化之后,从A端传到B端,然后在B端进行反序列化,在序列化Persion和反序列化Persion的时候A和B端都需要一个相同的类。如果两处的serialVersionUID不一致,会产生什么样的效果呢。
【答案】可以利用上面的代码做个试验来验证:
先执行测试类SerialTest,生成序列化文件,代表A端序列化后的文件,然后修改serialVersion值,再执行测试类DeserialTest,代表B端使用不同serialVersion的类去反序列化,结果报错:
java.io.InvalidClassException: com.example.demo.entity.serializable.Persion;
local class incompatible: stream classdesc serialVersionUID = 4359709211352400087,
local class serialVersionUID = 4359709211352400082
at java.io.ObjectStreamClass.initNonProxy(ObjectStreamClass.java:616)
at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1843)
at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1713)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:2000)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1535)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:422)
情况二:假设两处serialVersionUID一致,如果A端增加一个字段,然后序列化,而B端不变,然后反序列化,会是什么情况呢?
package com.example.demo.entity.serializable;
import java.io.Serializable;
public class Persion implements Serializable {
private static final long serialVersionUID = 4359709211352400082L;
public Long id;
public String name;
public int age;
public Persion(Long id, String name, int age) {
this.id = id;
this.name = name;
this.age = age;
}
public String toString() {
return id.toString() + "--" + name.toString() + "age:" + age;
}
}
package com.example.demo.entity.serializable;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
public class SerialTest {
public static void main(String[] args) {
Persion p = new Persion(1L, "陈俊生", 100);
System.out.println("person Seria:" + p);
try {
FileOutputStream fos = new FileOutputStream("Persion.txt");
ObjectOutputStream oos = new ObjectOutputStream(fos);
oos.writeObject(p);
oos.flush();
oos.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}
运行结果:
Person DeserialPerson:1--陈俊生
【答案】新增 public int age; 执行SerialTest,生成序列化文件,代表A端。删除 public int age,反序列化,代表B端,最后的结果为:执行序列化,反序列化正常,但是A端增加的字段丢失(被B端忽略)。
情况三:假设两处serialVersionUID一致,如果B端减少一个字段,A端不变,会是什么情况呢?
package com.example.demo.entity.serializable;
import java.io.Serializable;
public class Persion implements Serializable {
private static final long serialVersionUID = 4359709211352400082L;
public Long id;
public String name;
//public int age;
public Persion(Long id, String name) {
this.id = id;
this.name = name;
//this.age = age;
}
public String toString() {
return "Persion:" + id.toString() + "name:" + name.toString();
}
}
运行结果:
Person DeserialPerson: 1234,age:0
【答案】序列化,反序列化正常,B端字段少于A端,A端多的字段值丢失(被B端忽略)。
情况四:假设两处serialVersionUID一致,如果B端增加一个字段,A端不变,会是什么情况呢?
验证过程如下:
先执行SerialTest,然后在实体类Person增加一个字段age,如下所示,再执行测试类DeserialTest.
package com.sf.code.serial;
import java.io.Serializable;
public class Person implements Serializable {
private static final long serialVersionUID = 1234567890L;
public int id;
public String name;
public int age;
public Person(int id, String name) {
this.id = id;
this.name = name;
}
/*public Person(int id, String name, int age) {
this.id = id;
this.name = name;
this.age = age;
}*/
public String toString() {
return "Person: " + id
+ ",name:" + name
+ ",age:" + age;
}
}
结果:
Person DeserialPerson: 1234,name:wang,age:0
说明序列化,反序列化正常,B端新增加的int字段被赋予了默认值0。
最后通过下面的图片,总结一下上面的几种情况。
package com.example.demo.entity.serializable;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import org.aspectj.weaver.ast.Test;
public class TestStatic implements Serializable {
private static final long serialVersionUID = 1L;
public static int staticVar = 5;
public static void main(String[] args) {
try {
// 初始时staticVar为5
ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("result.obj"));
out.writeObject(new TestStatic());
out.close();
// 序列化后修改为10
TestStatic.staticVar = 10;
ObjectInputStream oin = new ObjectInputStream(new FileInputStream("result.obj"));
TestStatic t = (TestStatic) oin.readObject();
oin.close();
// 再读取,通过t.staticVar打印新的值
System.out.println(t.staticVar);
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
}
}
清单 2 中的 main 方法,将对象序列化后,修改静态变量的数值,再将序列化对象读取出来,然后通过读取出来的对象获得静态变量的数值并打印出来。依照清单 2,这个 System.out.println(t.staticVar) 语句输出的是 10 还是 5 呢?
最后的输出是 10,对于无法理解的读者认为,打印的 staticVar 是从读取的对象里获得的,应该是保存时的状态才对。之所以打印 10 的原因在于序列化时,并不保存静态变量,这其实比较容易理解,序列化保存的是对象的状态,静态变量属于类的状态,因此 序列化并不保存静态变量。
情境:一个子类实现了 Serializable 接口,它的父类都没有实现 Serializable 接口,序列化该子类对象,然后反序列化后输出父类定义的某变量的数值,该变量数值与序列化时的数值不同。
解决:要想将父类对象也序列化,就需要让父类也实现Serializable 接口。如果父类不实现的话的,就 需要有默认的无参的构造函数。在父类没有实现 Serializable 接口时,虚拟机是不会序列化父对象的,而一个 Java 对象的构造必须先有父对象,才有子对象,反序列化也不例外。所以反序列化时,为了构造父对象,只能调用父类的无参构造函数作为默认的父对象。因此当我们取父对象的变量值时,它的值是调用父类无参构造函数后的值。如果你考虑到这种序列化的情况,在父类无参构造函数中对变量进行初始化,否则的话,父类变量值都是默认声明的值,如 int 型的默认是 0,string 型的默认是 null。
Transient 关键字的作用是控制变量的序列化,在变量声明前加上该关键字,可以阻止该变量被序列化到文件中,在被反序列化后,transient 变量的值被设为初始值,如 int 型的是 0,对象型的是 null。
特性使用案例
我们熟悉使用 Transient 关键字可以使得字段不被序列化,那么还有别的方法吗?根据父类对象序列化的规则,我们可以将不需要被序列化的字段抽取出来放到父类中,子类实现 Serializable 接口,父类不实现,根据父类序列化规则,父类的字段数据将不被序列化,形成类图如图 2 所示。
图 2. 案例程序类图
上图中可以看出,attr1、attr2、attr3、attr5 都不会被序列化,放在父类中的好处在于当有另外一个 Child 类时,attr1、attr2、attr3 依然不会被序列化,不用重复抒写 transient,代码简洁。
序列化写入时的ObjectStreamClass.java中,
void writeNonProxy(ObjectOutputStream out) throws IOException {
out.writeUTF(name);
out.writeLong(getSerialVersionUID());
byte flags = 0;
...
public long getSerialVersionUID() {
// REMIND: synchronize instead of relying on volatile?
if (suid == null) {
suid = AccessController.doPrivileged(
new PrivilegedAction() {
public Long run() {
return computeDefaultSUID(cl);
}
}
);
}
return suid.longValue();
}