Hashmap源码注解


public class HashMap extends AbstractMap
        implements Map, Cloneable, Serializable {

    private static final long serialVersionUID = 362498820763181265L;

    //默认的初始容量和最大容量以及扩容后的容量都必须是2的幂
    //默认大小16
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

     //最大容量
    static final int MAXIMUM_CAPACITY = 1 << 30;

    //默认装载因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    //桶中存放元素个数大于这个数会转化成红黑树存储
    static final int TREEIFY_THRESHOLD = 8;

    //红黑树上节点个数小于这个值时,树转换成链表
    static final int UNTREEIFY_THRESHOLD = 6;

    //hash冲突链表转变为红黑树时,需要先判断此时数组容量
    //若是因为数组容量太小导致的冲突太多,则不进行链表转换为红黑树操作,转而使用resize()对hashmap进行扩容
    static final int MIN_TREEIFY_CAPACITY = 64;


    static class Node implements Map.Entry {
        //节点的hash值
        final int hash;
        //key值
        final K key;
        //value值
        V value;
        //指向下一个节点
        Node next;

        Node(int hash, K key, V value, Node next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        //一个节点的hash值是key和value分别取hash再做异或运算
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        //使用新值替换旧值并返回旧值
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        //对比两个note是否相等
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            //对象是Entry实例
            if (o instanceof Map.Entry) {
                Map.Entry e = (Map.Entry)o;
                if (Objects.equals(key, e.getKey()) &&
                        Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }



    //为了使高位数据发挥作用
    //hashCode 方法产生的 hash 是 int 类型,32 位宽。前16位为高位,后16位为低位,所以要右移16位
    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }


    static Class comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class)
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                            ((p = (ParameterizedType)t).getRawType() ==
                                    Comparable.class) &&
                            (as = p.getActualTypeArguments()) != null &&
                            as.length == 1 && as[0] == c)
                        return c;
                }
            }
        }
        return null;
    }


    @SuppressWarnings({"rawtypes","unchecked"})
    static int compareComparables(Class kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

    //返回一个比给定整数大且最接近的2的幂次方整数
    //不断的把第一个1开始后面的位变成1
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }



    //存储元素的数组,transient关键字表示该属性不能被序列化
    transient Node[] table;

    //将数据转换成set的另一种存储形式,这个变量主要用于迭代功能。
    transient Set> entrySet;

    //元素数量
    transient int size;

    //统计该map修改的次数
    transient int modCount;

    //临界值,也就是元素数量达到临界值时,会进行扩容
    int threshold;

    //加载因子,这个是变量
    final float loadFactor;




    public HashMap(int initialCapacity, float loadFactor) {
        //初始化的容量不能小于0
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                    initialCapacity);
        //初始化容量大于最大容量的话就变成最大容量
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        ///检查加载因子是否小于0或不合法
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                    loadFactor);
        this.loadFactor = loadFactor;
        //初始化阈值
        this.threshold = tableSizeFor(initialCapacity);
    }


    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }


    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
    }


    public HashMap(Map m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }


    final void putMapEntries(Map m, boolean evict) {
        int s = m.size();
        if (s > 0) {
            //初始化数组为空
            if (table == null) {
                //用负载因子计算
                float ft = ((float)s / loadFactor) + 1.0F;
                // 与最大容量作比较 返回对应的int类型值
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                        (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            //扩容
            else if (s > threshold)
                resize();
            //插入处理
            for (Map.Entry e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }


    public int size() {
        return size;
    }


    public boolean isEmpty() {
        return size == 0;
    }


    public V get(Object key) {
        Node e;
        //也是调用getNode方法来完成
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }


    final Node getNode(int hash, Object key) {
        //first 头结点,e 临时变量,n 长度,k key
        Node[] tab;
        Node first, e;
        int n;
        K k;
        //(n - 1) & hash是求模运算,fist即是数组下标节点
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (first = tab[(n - 1) & hash]) != null) {
            //对比第一个节点的hash,key如果相等就返回
            if (first.hash == hash &&
                    ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //不是头结点
            if ((e = first.next) != null) {
                //判断是否是红黑树
                if (first instanceof TreeNode)
                    //如果是红黑树就在红黑树中找
                    return ((TreeNode)first).getTreeNode(hash, key);
                do {//是链表,遍历链表,对比hash和key值,相等就返回
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }


    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }


    public V put(K key, V value) {
        //四个参数,第一个hash值,第四个参数表示如果该key存在值,如果为null的话,
        // 则插入新的value,最后一个参数,在hashMap中没有用,可以不用管,使用默认的即可
        return putVal(hash(key), key, value, false, true);
    }


    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node[] tab; //哈希数组
        Node p; //哈希桶的头结点
        int n, i;//n为hashmap长度,i为计算出的数组下标
        //获取长度并进行扩容,数组一开始没有加载,put后才开始加载
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //计算出的结点若没有值,就放入数据,并且将头结点给p
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //头结点已经有结点,发生哈希冲突
        else {
            Node e;//临时节点
            K k;//存放当前节点的key
            //hash值,key值都相等,覆盖
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //hash值不等于首节点,判断是否是红黑树节点
            //如果是红黑树节点,则在红黑树中进行添加,如果该节点已经存在,则返回该节点
            else if (p instanceof TreeNode)
                e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
            //hash值不等于首节点,且不是红黑树节点,则是链表节点
            else {
                //遍历该链表
                for (int binCount = 0; ; ++binCount) {
                    //p.next为空,说明到尾部,在尾部添加新的节点
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //判断是否要转换为红黑树结构
                        if (binCount >= TREEIFY_THRESHOLD - 1)
                            treeifyBin(tab, hash);
                        break;
                    }
                    //如果有重复的节点,则结束循环
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //有重复的key,则用待插入值进行覆盖,返回旧值
            if (e != null) {
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        //修改次数
        ++modCount;
        //实际长度+1,判断是否大于临界值,大于则扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

//扩容方法
    final Node[] resize() {
        Node[] oldTab = table;//获取没插入前的哈希数组
        int oldCap = (oldTab == null) ? 0 : oldTab.length;//old的长度
        int oldThr = threshold;//old的阈值
        int newCap, newThr = 0;//新的长度和阈值
        //oldCap > 0 说明不是首次初始化,因为hashmap是懒加载
        if (oldCap > 0) {
            //大于最大值
            if (oldCap >= MAXIMUM_CAPACITY) {
                //阈值变为整数最大值
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //扩容两倍,并且扩容后的长度要小于最大值,old长度也要大于16(初始值)
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                //临界值也扩容为old的临界值2倍
                newThr = oldThr << 1;
        }
        //这种情况是oldcap<0,但已经初始化,类似于将元素删除完了的情况,但临界值还在
        else if (oldThr > 0)
            newCap = oldThr;
        //首次初始化
        else {
            //16
            newCap = DEFAULT_INITIAL_CAPACITY;
            //临界值=容量*加载因子
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //阈值没有复制
        if (newThr == 0) {
            //new的临界值
            float ft = (float)newCap * loadFactor;
            //判断是否new容量是否大于最大值,临界值是否大于最大值
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }
        //最终改变阈值的位置
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
                //初始化新的数组
        Node[] newTab = (Node[])new Node[newCap];
        //赋予当前的table
        table = newTab;
        //此处old中的元素,遍历到new中
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                //临时变量
                Node e;
                //当前哈希桶位置部位空
                if ((e = oldTab[j]) != null) {
                    //变为空,方便回收
                    oldTab[j] = null;
                    //下一个节点没有元素
                    if (e.next == null)
                        //变量存入newtab
                        newTab[e.hash & (newCap - 1)] = e;
                    //若节点为红黑树,则存在冲突,哈希桶中有多个元素
                    else if (e instanceof TreeNode)
                        //把此树转移到newtab
                        ((TreeNode)e).split(this, newTab, j, oldCap);
                    //此处表示为链表结构,同样把链表转移到newCap中,就是把链表遍历后,把值转过去
                    else {
                        Node loHead = null, loTail = null;
                        Node hiHead = null, hiTail = null;
                        Node next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        //返回扩容后的hashMap
        return newTab;
    }


    final void treeifyBin(Node[] tab, int hash) {
        int n, index; Node e;
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode hd = null, tl = null;
            do {
                TreeNode p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }


    public void putAll(Map m) {
        putMapEntries(m, true);
    }


    public V remove(Object key) {
        Node e;
        //调用removeNode(hash(key), key, null, false, true)进行删除,第三个value为null,
        // 表示,把key的节点直接都删除了,不需要用到值,如果设为值,则还需要去进行查找操作
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
                null : e.value;
    }

//第一参数为哈希值,第二个为key,第三个value,第四个为是为true的话,
// 则表示删除它key对应的value,不删除key,第四个如果为false,则表示删除后,不移动节点
    final Node removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node[] tab;//哈希数组
        Node p;//p 数组下标的节点
        int n, index;//n 长度,index 当前数组下标
        ////哈希数组不为null,且长度大于0,然后获得到要删除key的节点所在是数组下标位置
        if ((tab = table) != null && (n = tab.length) > 0 &&
                (p = tab[index = (n - 1) & hash]) != null) {
            Node node = null, e; // node存储要删除的节点,e 临时变量
            K k;//k 当前节点的key
            V v;//v 当前节点的value
            ////如果数组下标的节点正好是要删除的节点,把值赋给临时变量node
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            ////也就是要删除的节点,在链表或者红黑树上,先判断是否为红黑树的节点
            else if ((e = p.next) != null) {

                if (p instanceof TreeNode)
                    //遍历红黑树,找到该节点并返回
                    node = ((TreeNode)p).getTreeNode(hash, key);
                else {//表示为链表节点,一样的遍历找到该节点
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key ||
                                        (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        //如果进入了链表中的遍历,那么此处的p不再是数组下标的节点,
                        // 而是要删除结点的上一个结点
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            ////找到要删除的节点后,判断!matchValue,我们正常的remove删除,!matchValue都为true
            if (node != null && (!matchValue || (v = node.value) == value ||
                    (value != null && value.equals(v)))) {
                //如果删除的节点是红黑树结构,则去红黑树中删除
                if (node instanceof TreeNode)
                    ((TreeNode)node).removeTreeNode(this, tab, movable);
                ////如果是链表结构,且删除的节点为数组下标节点,也就是头结点,直接让下一个作为头
                else if (node == p)
                    tab[index] = node.next;
                //为链表结构,删除的节点在链表中,把要删除的下一个结点设为上一个结点的下一个节点
                else
                    p.next = node.next;
                //修改计数器
                ++modCount;
                //长度减一
                --size;
                afterNodeRemoval(node);
                ////返回删除的节点
                return node;
            }
        }
        return null;
    }

 

你可能感兴趣的:(JAVA集合类)