序列的全排列

题目

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

思路

力扣官方题解

用回溯法
定义递归函数 backtrack(first, output) 表示从左往右填到第 first 个位置,当前排列为 output。 那么整个递归函数分为两个情况:

如果 first==n,说明我们已经填完了 n 个位置(注意下标从 0 开始),找到了一个可行的解,我们将 output 放入答案数组中,递归结束。

如果 first

具体来说,假设我们已经填到第 first 个位置,那么 nums[] 数组中 [0,first−1] 是已填过的数的集合,[first,n−1] 是待填的数的集合。我们肯定是尝试用 [first,n−1] 里的数去填第 first 个数,假设待填的数的下标为 i ,那么填完以后我们将第 i 个数和第 first 个数交换,即能使得在填第 first+1个数的时候 nums[] 数组的[0,first] 部分为已填过的数,[first+1,n−1] 为待填的数,回溯的时候交换回来即能完成撤销操作。

代码

class Solution {
public:
    void backtrack(vector>& res, vector& output, int first, int len){
        // 所有数都填完了
        if (first == len) {
            res.emplace_back(output);
            return;
        }
        for (int i = first; i < len; ++i) {
            // 动态维护数组
            swap(output[i], output[first]);
            // 继续递归填下一个数
            backtrack(res, output, first + 1, len);
            // 撤销操作
            swap(output[i], output[first]);
        }
    }
    vector> permute(vector& nums) {
        vector > res;
        backtrack(res, nums, 0, (int)nums.size());
        return res;
    }
};


你可能感兴趣的:(序列的全排列)