- 基于深度学习的中文语音识别系统(毕设)
程序员奇奇
深度学习从入门到精通语音识别深度学习人工智能
该系统实现了基于深度框架的语音识别中的声学模型和语言模型建模,其中声学模型包括CNN-CTC、GRU-CTC、CNN-RNN-CTC,语言模型包含transformer、CBHG,数据集包含stc、primewords、Aishell、thchs30四个数据集。本项目现已训练一个迷你的语音识别系统,将项目下载到本地上,下载thchs数据集并解压至data,运行test.py,不出意外能够进行识别,
- 音频基础知识
littlezls
audio多媒体开发类音视频网络android
系列文章目录多媒体音频基础知识及格式的介绍文章系列:音频基础知识介绍:音频基础知识https://blog.csdn.net/littlezls/article/details/135917303音频基础知识介绍:音频几个相关概念及心理声学模型https://blog.csdn.net/littlezls/article/details/135499627音频编解码格式介绍:音频编码格式介绍htt
- 【语音合成】中文-多情感领域-16k-多发音人
太空眼睛
人工智能tts语音合成数字人modelscopepython
模型介绍语音合成-中文-多情感领域-16k-多发音人框架描述拼接法和参数法是两种Text-To-Speech(TTS)技术路线。近年来参数TTS系统获得了广泛的应用,故此处仅涉及参数法。参数TTS系统可分为两大模块:前端和后端。前端包含文本正则、分词、多音字预测、文本转音素和韵律预测等模块,它的功能是把输入文本进行解析,获得音素、音调、停顿和位置等语言学特征。后端包含时长模型、声学模型和声码器,它
- 音频几个相关概念及心理声学模型
littlezls
多媒体audio开发类音视频
系列文章目录音频格式的介绍文章系列:音频编解码格式介绍:音频几个相关概念及心理声学模型https://blog.csdn.net/littlezls/article/details/135499627音频编解码格式介绍:音频编码格式介绍https://blog.csdn.net/littlezls/article/details/135862140音频编解码格式介绍(1)ADPCM:adpcm编解
- 【语音基础】语音相关的基础
liefyuan
音频语音识别
文章目录端到端模型与传统模型的区别传统模型(非端到端模型)端到端模型如何理解强制对齐?麦克风的类型有哪些?语音识别框架和模型语音采样率语音识别资料端到端模型与传统模型的区别传统模型(非端到端模型)传统模型通常由不同的组件组成,例如文本处理模块、声学模型、声码器等等。一方面不同的组件之间相互组装设计比较费力。另一方面由于组件之间单独训练,可能会到导致每个组成部分之间的错误会叠加,从而不断放大误差。例
- 语音识别软件列表
李二狗的星球
翻译自Wikipedia,大部分的开源的或商用的智能语音识别软件工具介绍。大部分的开源声学模型和语音语料库都是只支持英语的,所以在这里就不介绍了,重点介绍一下终端输入采集的工具介绍:在Chrome浏览器中作为Web应用程序运行的语音识别软件。他们使用HTML5Web-Speech-API:基于chrome的跨平台webapps只介绍以下三款免费的工具:voicenotenook:免费听写,语音输入
- 人工智能知识
奥利奥利奥利奥
人工智能
11语音处理语音识别系统框架:特征提取(mfcc、傅立叶)->声学模型(高斯混合)->语言模型->解码搜索特征提取:梅尔频率倒谱系数、傅里叶变换声学模型:高斯混合模型-隐马尔可夫模型14多智能体系统自主性、主动性、反应能力、社会能力产生式表示:规则:IFATHEMB(置信度默认100)事实:(Li,Age,40,默认0.1)框架表示法:框架(事物)-槽(各个方面)-侧面-值框架表示法是一种适应性强
- 数据压缩实验——MPEG音频编码实验
qq_43310997
mpg音频编码解码c++
目录实验原理MPEG-1AudioLayerII编码器原理基本思想两条线时-频分析的矛盾心理声学模型MPEG-1音频编码器框架图MPEG-1声音的主要性能多相滤波器组心理声学模型比特分配器装帧实验要求程序分析调试及实验结果输出音频的采样率和目标码率输出某个数据帧所分配的比特数,比例因子,比特分配结果结果分析实验原理MPEG-1AudioLayerII编码器原理基本思想分析信号,去掉不能被感知的部分
- 超详细讲解CTC理论和实战
奈何缘浅wyj
CTC简介对于语音识别来说,训练数据的输入是一段音频,输出是它转录的文字(transcript),但是我们是不知道字母和语音是怎么对齐(align)的。这使得训练语音识别比看起来更加复杂。要人来标注这种对齐是非常困难而且容易出错的,因为很多音素的边界是很难区分,比如下图,人通过看波形或者频谱是很难准确的区分其边界的。之前基于HMM的语音识别系统在训练声学模型是需要对齐,我们通常会让模型进行强制对齐
- 语音识别(五)——Mel-Frequency Analysis, FBank, 语音识别的评价指标, 声学模型进阶
antkillerfarm
语音识别
CepstrumAnalysis(续)这里,我们对Fouriertransform做一个简单的回顾。设h(t)是一个时域函数,而H(f)是一个频域函数,则Fouriertransform为:H(f)=∫∞−∞h(t)e2πiftdtH(f)=∫−∞∞h(t)e2πiftdtinverseFouriertransformation为:h(t)=∫∞−∞H(f)e−2πiftdfh(t)=∫−∞∞H(
- 最新综述:跨语言语音合成方法的发展趋势与方向
PaperWeekly
编程语言python机器学习人工智能深度学习
©PaperWeekly原创·作者|音月引言语音合成(Text-to-Speech,TTS)是指文字转语音相关技术。随着人工智能技术的发展,TTS的声学模型和声码器模型效果都在不断提高,单一语言在数据量足够的情况下已经可以合成较高品质的语音。研究人员们也逐渐开始关注跨语言语音合成领域,本文主要介绍了近年来跨语言语音合成方法的发展趋势与方向。背景早期人们为了合成跨语言的发音只能用多个语音合成系统来合
- 人机交互-语音交互方法综述
yuxy36
人机交互
上图展示了智能语音的界面架构,从中可以看出,语音交互所涉及的技术模块有4个部分,如下图所示:首先,通过应用自动语音识别技术听到用户说的话,然后应用自然语言理解来分析语句的含义,随后用自然语言生成对话结果,最后应用文字转语音技术将结果播放给用户,完成与用户的语音交互。下面分别介绍这几种技术:自动语音识别:AutomaticSpeechRecognition,ASRASR是通过声学模型和语言模型,将人
- 以语音评测的PC端demo代码为例,讲解口语评测如何实现
腾讯云开发者
人工智能语音云计算程序员
本文由云+社区发表作者:腾讯智慧教育概述腾讯云智聆口语评测(英文版)(SmartOralEvaluation-English,SOE-E)是腾讯云推出的语音评测产品,是基于英语口语类教育培训场景和腾讯云的语音处理技术,应用特征提取、声学模型和语音识别算法,为儿童和成人提供高准确度的英语口语发音评测。腾讯云智聆口语评测(英文版)支持单词和句子模式的评测,多维度反馈口语表现,可广泛应用于英语口语类教学
- 语音信号的线性预测分析及其Matlab源码
美丽风景-c
matlab语音识别开发语言Matlab
语音信号的线性预测分析及其Matlab源码线性预测分析(LinearPredictiveAnalysis,简称LPA)是一种常用的语音信号处理技术,用于估计语音信号的声道特性和预测下一个样本的值。在本文中,我们将介绍语音信号的线性预测分析原理,并提供相应的Matlab源码示例。线性预测分析的原理基于声学模型假设,即语音信号可以看作是通过一个线性滤波器(声道)作用于激励信号(声带振动)而产生的。该滤
- 基于深度学习的语音识别算法的设计与实现
01图灵科技
深度学习python深度学习语音识别算法
收藏和点赞,您的关注是我创作的动力文章目录概要一、课题内容二、需求分析2.1算法需求分析2.2语音录制2.3声学模型2.4语言模型2.5训练集和测试集2.6深度神经网络三算法设计原理3.1语音识别系统3.1.1声学模型3.1.2语言模型3.1.3发音词典四简单问答功能1.界面展示:2.录音模块的功能:3.语音解码功能:4.语音问答功能:5.翻译功能:五结论目录概要 语音识别(SpeechReco
- 四、音频编解码
Mjs
声音的三要素音调:音频,小孩>女孩>男孩音量:声音振动幅度音色:材质有关,本质是谐波心理声学模型人类的听觉范围:20Hz-20KHzPCM(脉冲编码调制)模拟信号转化为数字信号的到的数据PCM数据采样量化编码⾳频信号的传输率=取样频率*样本量化⽐特数*通道数样本值的量化⽐特数=16普通⽴体声的信号通道数=2数字信号传输码流⼤约1.4Mbit/s⼀秒钟的数据量为1.4Mbit/(8/Byte)达17
- CocosCreator3.8研究笔记(十三)CocosCreator 音频资源理解
w风雨无阻w
CocosCreator3.8笔记音视频CocosCreatorCocosCreator3.8Cocosjavascript
1、CocosCreator支持音频格式目前CocosCreator支持以下格式的音频文件:音频格式说明.ogg.ogg是一种开源的有损音频压缩格式,与同类型的音频压缩格式相比,优点在于支持多声道编码,采用更加先进的声学模型来减少损失音质,同时文件大小在相同条件下比.mp3格式小。目前Android系统所有的内置铃声也都使用.ogg文件。.mp3.mp3是最常见的一种数字音频编码和有损压缩格式。通
- 音乐基础、音频合成、特征提取工具liborsa
缠禅可禅
[TOC]工具Kaldi,虽然非常高效,表现也好,但是忒难用,不灵活,总得改C++代码;PyKaldi,虽然用上了机器学习界宠儿Python,但本质上跟Kaldi还是一回事嘛;PyTorch-Kaldi,虽然灵活了一些,声学模型也易于修改,但是,跟前面一样,它也还是Kaldi呀;ESPNET,虽然是基于Python和PyTorch的,但是只支持端到端语音识别,太不全面了;macos软件:http:
- 智能语音对话处理过程
xiyt
自然语言处理神经网络机器学习自动驾驶人工智能
ASR(AutomaticSpeechRecognition):语音识别,听见你说的是什么,转化成文字。NLU(NaturalLanguageUnderstanding):自然语言理解,知道你想干什么,理解你话中的意图。NLG(NaturalLanguageGeneration):自然语言生成,输出内容发音标注。TTS(TextToSpeech):语音合成,机器合成输出语音。声学模型发声的基本音素
- 基于MFCC特征提取和HMM模型的语音合成算法matlab仿真
简简单单做算法
MATLAB算法开发#视频语音语音识别人工智能MFCC特征提取HMM模型语音合成
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022A3.部分核心程序............................................................................%hmm是已经建立好的声学模型库loadhmm.matfori=1:l
- 语音识别 — 特征提取 MFCC 和 PLP
无水先生
语音处理语音识别人工智能
一、说明语音识别是一种技术,通过计算机和软件系统,将人们的口头语言转换为计算机可读的文本或命令。它使用语音信号处理算法来识别和理解人类语言,并将其转换为计算机可处理的格式。语音识别技术被广泛应用于许多领域,如语音助手、语音控制、语音翻译、语音搜索、电话自动接听等。二、基本问题提出回到语音识别,我们的目标是根据声学和语言模型找到与音频对应的最佳单词序列。为了创建声学模型,我们的观察X由一系列声学特征
- AI大语音(十)——N-gram语言模型(深度解析)
AI大道理
语音识别(ASR)机器学习算法语音识别
本文来自公众号“AI大道理”。这里既有AI,又有生活大道理,无数渺小的思考填满了一生。上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声
- cocosCreator笔记 之 背景音乐
FlyingBird~
cocosCreatorcocos2d
版本:3.4简介cocosCreator目前支持的音频格式:音频格式说明.ogg开源的有损压缩格式。与同类型的音频相比,优点在于支持多声道编码,采用更加先进的声学模型来减少损失音质,同时文件大小比.mp3格式小。.mp3最常见的数字音频编码和有损压缩格式。通过舍弃PCM音频资料中对人类听觉不重要的部分,达到压缩缩小文件的目的。被大量软硬件支持,应用广泛,是目前的主流。.wav一种标准数字音频文件,
- 声音合成与克隆——制作用于训练的声音数据集
知来者逆
语音合成声音克隆人声伴奏提取UVRAdobeAudition
前言1.PaddleSpeech是一个简单易用的all-in-one的语音工具箱,支持语音处理的相关操作,如语音知别,语音合成,声纹识别,声音分类,语音翻译,语音唤醒等多个方向的应用开发。这里只使用到语音合成与声音克隆,主要由文本前端(TextFrontend)、声学模型(AcousticModel)和声码器(Vocoder)三个主要模块,模块工作流程如下:通过文本前端模块将原始文本转换为字符/音
- CTC-based AM for ASR总结
ChongmingLiu
一、利用可变长度上下文信息的声学模型DL/HMM混合模型是ASR中成功的第一个深度学习体系,仍然是工业中使用的主流模型。DL/HMM够利用上下文信息是其优越性能的一个重要因素。在大多数系统中,9~13帧的窗口(overlap4~6帧)的特征用作DNN的输入,以利用来自相邻帧的信息以提高精度。最优的上下文长度是受语速和音调影响的,因此需要变长的上下文信息。A.RNNs前馈DNNS只考虑固定长度滑动窗
- 基于卷积神经网络和连接性时序分类的语音识别系统,含核心Python工程源代码(深度学习)个人可二次开发
小胡说人工智能
语音交互深度学习深度学习cnn自然语言处理语音识别python
目录前言总体设计系统整体结构图系统流程图运行环境模块实现1.特征提取2.声学模型3.CTC解码4.语言模型系统测试工程源代码下载其它资料下载前言本项目基于卷积神经网络和连接性时序分类方法,采用中文语音数据集进行训练,实现声音转录为中文拼音,并将拼音序列转换为中文文本。本项目提供的是一套完整的语音识别解决方案,可以帮助用户快速搭建语音识别应用,适用于多种场景下的需求。伙伴们可以通过该工程源码,进行个
- 使用轻改版PaddleSpeech套件训练自己的AI歌手-声学模型篇
AI Studio
人工智能语音识别
★★★本文源自AIStudio社区精品项目,【点击此处】查看更多精品内容>>>使用轻改版PaddleSpeech套件训练自己的AI歌手-声学模型篇现在你可以拥有自己的AI歌手啦,在AiStudio中上传数据集后,按照下面的步骤进行操作,经过漫长的训练等待后(4~14天),就可以拥有一个不错的AI歌手了。项目魔改自PaddleSpeech中的Fastspeech2说话人模型,有兴趣的同好可以去阅读相
- 各大公司的语音技术调研
horse_tf
背景:针对声学模型的调研,时间2019年8月SpeechRecognitiononLibriSpeechtest-otherLibriSpeech上的WER排名1.google的语音识别技术(LAS:LSTM+Attentionn)论文1(2018年):STATE-OF-THE-ARTSPEECHRECOGNITIONWITHSEQUENCE-TO-SEQUENCEMODELS摘要:基于注意力机制
- TTS | 语音合成论文概述
夏天|여름이다
-TTS-语音识别人工智能TTS语音合成
综述系列2021_ASurveyonNeuralSpeechSynthesis论文:2106.15561.pdf(arxiv.org)论文从两个方面对神经语音合成领域的发展现状进行了梳理总结(逻辑框架如图1所示):核心模块:分别从文本分析(textanalysis)、声学模型(acousticmodel)、声码器(vocoder)、完全端到端模型(fullyend-to-endmodel)等方面进
- [VLDB2019]DLM:微信大规模分布式n-gram语言模型系统
OpenIM
即时通讯IM语音识别自然语言处理
Wechat&NUS《ADistributedSystemforLarge-scalen-gramLanguageModelsatTencent》分布式语言模型,支持大型n-gramLM解码的系统。本文是对原VLDB2019论文的简要翻译摘要n-gram语言模型广泛用于语言处理,例如自动语音识别(ASR)。它可以对从发生器(例如声学模型)产生的候选单词序列进行排序。大型n-gram模型通常可以提供
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite