Problem Description
传送门
N sticks are arranged in a row, and their lengths are a1,a2,…,aN.
There are Q querys. For i-th of them, you can only use sticks between li-th to ri-th. Please output the maximum circumference of all the triangles that you can make with these sticks, or print −1 denoting no triangles you can make.
Input
There are multiple test cases.
Each case starts with a line containing two positive integers N,Q(N,Q≤105).
The second line contains N integers, the i-th integer ai(1≤ai≤109) of them showing the length of the i-th stick.
Then follow Q lines. i-th of them contains two integers li,ri(1≤li≤ri≤N), meaning that you can only use sticks between li-th to ri-th.
It is guaranteed that the sum of Ns and the sum of Qs in all test cases are both no larger than 4×105.
Output
For each test case, output Q lines, each containing an integer denoting the maximum circumference.
Sample Input
5 3
2 5 6 5 2
1 3
2 4
2 5
Sample Output
13
16
16
主席树模板题,直接上代码
参考代码
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
typedef long long ll;
typedef pair<int, int>P;
const int INF = 0x3f3f3f3f;
const int NINF = 0xc0c0c0c0;
const int MAX_N = 100000+5;
const int S=(1<<18)+MAX_N*50;
struct node{
int k,id;
};
int n,q;
node data[MAX_N+1];
int ii[MAX_N+1];
int tree[MAX_N+1];
int tot;
int kat[S],lc[S],rc[S];
bool cmp(node A,node B){
return A.k<B.k;
}
int init(int l=1,int r=n){
int t=++tot;
kat[t]=0;lc[t]=rc[t]=0;
if(l!=r){
lc[t]=init(l,(l+r)/2);
rc[t]=init((l+r)/2+1,r);
}
return t;
}
void build(int k,int pos){
int last=tree[k-1];
tree[k]=++tot;
kat[tot]=kat[last]+1;
int l=1,r=n;
while(lc[last]||rc[last]){
if(pos<=(l+r)/2){
lc[tot]=tot+1;
rc[tot]=rc[last];
kat[++tot]=kat[lc[last]]+1;
last=lc[last];
r=(l+r)/2;
}
else{
lc[tot]=lc[last];
rc[tot]=tot+1;
kat[++tot]=kat[rc[last]]+1;
last=rc[last];
l=(l+r)/2+1;
}
}
lc[tot]=rc[tot]=0;
}
int query(int k,int a,int b,int l=1,int r=n){
if(l==r)return l;
int ans=kat[lc[b]]-kat[lc[a]];
if(ans>=k)return query(k,lc[a],lc[b],l,(l+r)/2);
return query(k-ans,rc[a],rc[b],(l+r)/2+1,r);
}
ll get(int l,int r,int k){
return data[query(r-l+2-k,tree[l-1],tree[r])].k;
}
void solve(int l,int r){
if(r-l<2){
printf("-1\n");
return ;
}
ll a,b=get(l,r,1),c=get(l,r,2);
for(int i=3;i<=r-l+1;i++){
a=b;b=c;c=get(l,r,i);
if(a<b+c){
printf("%lld\n",a+b+c);
return ;
}
}
printf("-1\n");
}
int main(){
while(scanf("%d%d",&n,&q)!=EOF){
for(int i=1;i<=n;i++){
scanf("%d",&data[i].k);
data[i].id=i;
}
sort(data+1,data+n+1,cmp);
for(int i=1;i<=n;i++)ii[data[i].id]=i;
tot=0;
tree[0]=init();
for(int i=1;i<=n;i++){
build(i,ii[i]);
}
while(q--){
int l,r;
scanf("%d%d",&l,&r);
solve(l,r);
}
}
return 0;
}