生产环境偶尔会有一些慢请求导致系统性能下降,吞吐量下降,下面介绍几种优化建议。
电子商务类型网站大多都是短请求,一般响应时间都在100ms,这时可以将web容器从tomcat替换为undertow,下面介绍下步骤:
org.springframework.boot
spring-boot-starter-web
org.springframework.boot
spring-boot-starter-tomcat
org.springframework.boot
spring-boot-starter-undertow
# 设置IO线程数, 它主要执行非阻塞的任务,它们会负责多个连接, 默认设置每个CPU核心一个线程
server.undertow.io-threads=8
# 阻塞任务线程池, 当执行类似servlet请求阻塞操作, undertow会从这个线程池中取得线程,它的值设置取决于系统的负载
server.undertow.worker-threads=64
# 以下的配置会影响buffer,这些buffer会用于服务器连接的IO操作,有点类似netty的池化内存管理
# 每块buffer的空间大小,越小的空间被利用越充分
server.undertow.buffer-size=1024
# 是否分配的直接内存
server.undertow.direct-buffers=true
重新启动可以在控制台看到容器已经切换为undertow了。
将部分热点数据或者静态数据放到本地缓存或者redis中,如果有需要可以定时更新缓存数据。
在代码过程中我们很多代码都不需要等返回结果,也就是部分代码是可以并行执行,这个时候可以使用异步,最简单的方案是使用springboot提供的@Async注解,当然也可以通过线程池来实现,下面简单介绍下异步步骤。
org.springframework.boot
spring-boot-starter-web
@EnableAsync
@SpringBootApplication
public class AppApplication{
public static void main(String[] args){
SpringApplication.run(AppApplication.class, args);
}
}
如果是需要等待返回值,则demo如下
@Async
public Future doReturn(int i){
try {
// 这个方法需要调用500毫秒
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
/ 消息汇总
return new AsyncResult<>("异步调用");
}
import org.slf4j.MDC;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.TaskDecorator;
import org.springframework.scheduling.annotation.AsyncConfigurerSupport;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import java.util.Map;
import java.util.concurrent.Executor;
/**
* @Description:
*/
@EnableAsync
@Configuration
public class AsyncConfig extends AsyncConfigurerSupport {
@Override
public Executor getAsyncExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setTaskDecorator(new MdcTaskDecorator());
executor.initialize();
return executor;
}
}
class MdcTaskDecorator implements TaskDecorator {
@Override
public Runnable decorate(Runnable runnable) {
Map contextMap = MDC.getCopyOfContextMap();
return () -> {
try {
MDC.setContextMap(contextMap);
runnable.run();
} finally {
MDC.clear();
}
};
}
}
import lombok.extern.slf4j.Slf4j;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import java.util.concurrent.Executor;
import java.util.concurrent.ThreadPoolExecutor;
@Configuration
@Slf4j
public class TaskExecutorConfig {
@Bean("localDbThreadPoolTaskExecutor")
public Executor threadPoolTaskExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
taskExecutor.setCorePoolSize(5);
taskExecutor.setMaxPoolSize(200);
taskExecutor.setQueueCapacity(200);
taskExecutor.setKeepAliveSeconds(100);
taskExecutor.setThreadNamePrefix("LocalDbTaskThreadPool");
taskExecutor.setRejectedExecutionHandler((Runnable r, ThreadPoolExecutor executor) -> {
if (!executor.isShutdown()) {
try {
Thread.sleep(300);
executor.getQueue().put(r);
} catch (InterruptedException e) {
log.error(e.toString(), e);
Thread.currentThread().interrupt();
}
}
}
);
taskExecutor.initialize();
return taskExecutor;
}
}
可以将比较耗时或者不同的业务拆分出来提供单节点的吞吐量
有很多场景对数据实时性要求不那么强的,或者对业务进行业务容错处理时可以将消息发送到kafka,然后延时消费。举个例子,根据条件查询指定用户发送推送消息,这里可以时按时、按天、按月等等。