如何提升SpringBoot服务吞吐量?

### 背景 ###

生产环境偶尔会有一些慢请求导致系统性能下降,吞吐量下降,下面介绍几种优化建议。

### 方案 ###

1、undertow替换tomcat

电子商务类型网站大多都是短请求,一般响应时间都在100ms,这时可以将web容器从tomcat替换为undertow,下面介绍下步骤:

1.1、增加pom配置


		
		    org.springframework.boot
			spring-boot-starter-web
			
				
					org.springframework.boot
					spring-boot-starter-tomcat
				
			
		
		
		    org.springframework.boot
		    spring-boot-starter-undertow
		

1.2、增加相关配置

# 设置IO线程数, 它主要执行非阻塞的任务,它们会负责多个连接, 默认设置每个CPU核心一个线程
server.undertow.io-threads=8
# 阻塞任务线程池, 当执行类似servlet请求阻塞操作, undertow会从这个线程池中取得线程,它的值设置取决于系统的负载
server.undertow.worker-threads=64
# 以下的配置会影响buffer,这些buffer会用于服务器连接的IO操作,有点类似netty的池化内存管理
# 每块buffer的空间大小,越小的空间被利用越充分
server.undertow.buffer-size=1024
# 是否分配的直接内存
server.undertow.direct-buffers=true

重新启动可以在控制台看到容器已经切换为undertow了。

2、缓存

将部分热点数据或者静态数据放到本地缓存或者redis中,如果有需要可以定时更新缓存数据。

3、异步

在代码过程中我们很多代码都不需要等返回结果,也就是部分代码是可以并行执行,这个时候可以使用异步,最简单的方案是使用springboot提供的@Async注解,当然也可以通过线程池来实现,下面简单介绍下异步步骤。

3.1、pom依赖 一般springboot引入web相关依赖就行


    org.springframework.boot
    spring-boot-starter-web

3.2、在启动类中增加@EnableAsync注解

@EnableAsync
@SpringBootApplication
public class AppApplication{
    public static void main(String[] args){
        SpringApplication.run(AppApplication.class, args);
    }
}

3.3、需要时在指定方法中增加@Async注解

如果是需要等待返回值,则demo如下

@Async
public Future doReturn(int i){
    try {
        // 这个方法需要调用500毫秒
         Thread.sleep(500);
     } catch (InterruptedException e) {
       e.printStackTrace();
    }
    / 消息汇总
    return new AsyncResult<>("异步调用");
}

3.4、如果有线程变量或者logback中的mdc,可以增加传递

import org.slf4j.MDC;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.TaskDecorator;
import org.springframework.scheduling.annotation.AsyncConfigurerSupport;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;

import java.util.Map;
import java.util.concurrent.Executor;

/**
 * @Description:
 */
@EnableAsync
@Configuration
public class AsyncConfig extends AsyncConfigurerSupport {
    @Override
    public Executor getAsyncExecutor() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        executor.setTaskDecorator(new MdcTaskDecorator());
        executor.initialize();
        return executor;
    }
}

class MdcTaskDecorator implements TaskDecorator {

    @Override
    public Runnable decorate(Runnable runnable) {
        Map contextMap = MDC.getCopyOfContextMap();
        return () -> {
            try {
                MDC.setContextMap(contextMap);
                runnable.run();
            } finally {
                MDC.clear();
            }
        };
    }
}

3.5、有时候异步需要增加阻塞

import lombok.extern.slf4j.Slf4j;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;

import java.util.concurrent.Executor;
import java.util.concurrent.ThreadPoolExecutor;

@Configuration
@Slf4j
public class TaskExecutorConfig {

    @Bean("localDbThreadPoolTaskExecutor")
    public Executor threadPoolTaskExecutor() {
        ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
        taskExecutor.setCorePoolSize(5);
        taskExecutor.setMaxPoolSize(200);
        taskExecutor.setQueueCapacity(200);
        taskExecutor.setKeepAliveSeconds(100);
        taskExecutor.setThreadNamePrefix("LocalDbTaskThreadPool");
        taskExecutor.setRejectedExecutionHandler((Runnable r, ThreadPoolExecutor executor) -> {
                    if (!executor.isShutdown()) {
                        try {
                            Thread.sleep(300);
                            executor.getQueue().put(r);
                        } catch (InterruptedException e) {
                            log.error(e.toString(), e);
                            Thread.currentThread().interrupt();
                        }
                    }
                }
        );
        taskExecutor.initialize();
        return taskExecutor;
    }

}

4、业务拆分

可以将比较耗时或者不同的业务拆分出来提供单节点的吞吐量

5、集成消息队列

有很多场景对数据实时性要求不那么强的,或者对业务进行业务容错处理时可以将消息发送到kafka,然后延时消费。举个例子,根据条件查询指定用户发送推送消息,这里可以时按时、按天、按月等等。

你可能感兴趣的:(如何提升SpringBoot服务吞吐量?)