参考链接:数据结构(严蔚敏)
对比之前博客讨论的二叉排序树 二叉平衡树 红黑树 B B+树,它们的查找都是先从根节点进行查找,从节点取出数据或索引与查找值进行比较。那么,有没有一种函数H,根据这个函数和查找关键字key,可以直接确定查找值所在位置,而不需要一个个比较。这样就**“预先知道”**key所在的位置,直接找到数据,提升效率。
即
地址index=H(key)
说白了,hash函数就是根据key计算出应该存储地址的位置,而哈希表是基于哈希函数建立的一种查找表
根据前人经验,统计出如下几种常用hash函数的构造方法:
直接定制法
哈希函数为关键字的线性函数如 H(key)=a*key+b
这种构造方法比较简便,均匀,但是有很大限制,仅限于地址大小=关键字集合的情况
使用举例:
假设需要统计中国人口的年龄分布,以10为最小单元。今年是2018年,那么10岁以内的分布在2008-2018,20岁以内的分布在1998-2008……假设2018代表2018-2008直接的数据,那么关键字应该是2018,2008,1998……
那么可以构造哈希函数H(key)=(2018-key)/10=201-key/10
那么hash表建立如下
index | key | 年龄 | 人数(假设数据) |
0 | 2018 | 0-10 | 200W |
1 | 2008 | 10-20 | 250W |
2 | 1998 | 20-30 | 253W |
3 | 1988 | 30-40 | 300W |
…… |
数字分析法
假设关键字集合中的每个关键字key都是由s位数字组成( k 1 , k 2 , … … , k n k 1 , k 2 , … … , k n k 1 , k 2 , … … , k n k1,k2,……,knk1,k2,……,kn k_1,k_2,……,k_n k1,k2,……,knk1,k2,……,knk1,k2,……,kndi是一组伪随机数列
注意
增量di应该具有以下特点(完备性):产生的Hi(地址)均不相同,且所产生的s(m-1)个Hi能覆盖hash表中的所有地址
废话不多说,上例子就明白了
有一组数据
19 01 23 14 55 68 11 86 37要存储在表长11的数组中,其中H(key)=key MOD 11
那么按照上面三种解决冲突的方法,存储过程如下:
(表格解释:从前向后插入数据,如果插入位置已经占用,发生冲突,冲突的另起一行,计算地址,直到地址可用,后面冲突的继续向下另起一行。最终结果取最上面的数据(因为是最“占座”的数据))
线性探测再散列
我们取di=1,即冲突后存储在冲突后一个位置,如果仍然冲突继续向后
index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
key | 55 | 1 | 14 | 19 | 86 | ||||||
23冲突 | 23 | ||||||||||
68冲突 | 68冲突 | 68 | |||||||||
11冲突 | 11冲突 | 11冲突 | 11冲突 | 11冲突 | 11 | ||||||
37冲突 | 37冲突 | 37 | |||||||||
最终存储结果 | 55 | 1 | 23 | 14 | 68 | 11 | 37 | 19 | 86 |
index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
key | 55 | 1 | 14 | 37 | 19 | 86 | |||||
23冲突 | H(23)+1 | ||||||||||
H(68)-1冲突 | 68冲突 | H(68)+1冲突 | H(68)+4 | ||||||||
11冲突 | H(11)+1冲突 | H(11)-1 | |||||||||
最终存储结果 | 55 | 1 | 23 | 14 | 37 | 68 | 19 | 86 | 11 |
index | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
key | 55 | 1 | 68 | 14 | 19 | 86 | |||||
23冲突 | H(23)+3+1 | ||||||||||
11冲突 | H(11)+1+1冲突 | H(11)+1+1+1+1 | |||||||||
(H(37)+8)模11冲突 | 37冲突 | (H(37)+8+8+8)模11 | (H(37)+8+8)模11冲突 | ||||||||
最终存储结果 | 55 | 1 | 68 | 14 | 23 | 11 | 37 | 19 | 86 |
产生hash冲突后在存储数据后面加一个指针,指向后面冲突的数据
上面的例子,用链地址法则是下面这样:
查找过程和造表过程一致,假设采用开放定址法处理冲突,则查找过程为:
对于给定的key,计算hash地址index = H(key)
如果数组arr【index】的值为空 则查找不成功
如果数组arr【index】== key 则查找成功
否则 使用冲突解决方法求下一个地址,直到arr【index】== key或者 arr【index】==null
决定hash表查找的ASL因素:
1)选用的hash函数
2)选用的处理冲突的方法
3)hash表的饱和度,装载因子 α=n/m(n表示实际装载数据长度 m为表长)
一般情况,假设hash函数是均匀的,则在讨论ASL时可以不考虑它的因素
hash表的ASL是处理冲突方法和装载因子的函数
前人已经证明,查找成功时如下结果:
可以看到无论哪个函数,装载因子越大,平均查找长度越大,那么装载因子α越小越好?也不是,就像100的表长只存一个数据,α是小了,但是空间利用率不高啊,这里就是时间空间的取舍问题了。通常情况下,认为α=0.75是时间空间综合利用效率最高的情况。
上面的这个表可是特别有用的。假设我现在有10个数据,想使用链地址法解决冲突,并要求平均查找长度<2
那么有1+α/2 <2
α<2
即 n/m<2 (n=10)
m>10/2
m>5 即采用链地址法,使得平均查找长度< 2 那么m>5
之前我的博客讨论过各种树的平均查找长度,他们都是基于存储数据n的函数,而hash表不同,他是基于装载因子的函数,也就是说,当数据n增加时,我可以通过增加表长m,以维持装载因子不变,确保ASL不变。
那么hash表的构造应该是这样的:
首先链地址法是可以直接删除元素的,但是开放定址法是不行的,拿前面的双探测再散列来说,假如我们删除了元素1,将其位置置空,那 23就永远找不到了。正确做法应该是删除之后置入一个原来不存在的数据,比如-1
[原文转自](https://blog.csdn.net/u011109881/article/details/80379505)