哈希表(数据结构)

参考链接:数据结构(严蔚敏)

一、什么是Hash表

要想知道什么是哈希表,那得先了解哈希函数
哈希函数

对比之前博客讨论的二叉排序树 二叉平衡树 红黑树 B B+树,它们的查找都是先从根节点进行查找,从节点取出数据或索引与查找值进行比较。那么,有没有一种函数H,根据这个函数和查找关键字key,可以直接确定查找值所在位置,而不需要一个个比较。这样就**“预先知道”**key所在的位置,直接找到数据,提升效率。

地址index=H(key)
说白了,hash函数就是根据key计算出应该存储地址的位置,而哈希表是基于哈希函数建立的一种查找表

二、哈希函数的构造方法

根据前人经验,统计出如下几种常用hash函数的构造方法:
直接定制法
哈希函数为关键字的线性函数如 H(key)=a*key+b
这种构造方法比较简便,均匀,但是有很大限制,仅限于地址大小=关键字集合的情况
使用举例:
假设需要统计中国人口的年龄分布,以10为最小单元。今年是2018年,那么10岁以内的分布在2008-2018,20岁以内的分布在1998-2008……假设2018代表2018-2008直接的数据,那么关键字应该是2018,2008,1998……
那么可以构造哈希函数H(key)=(2018-key)/10=201-key/10
那么hash表建立如下

index key 年龄 人数(假设数据)
0 2018 0-10 200W
1 2008 10-20 250W
2 1998 20-30 253W
3 1988 30-40 300W
……

数字分析法
假设关键字集合中的每个关键字key都是由s位数字组成( k 1 , k 2 , … … , k n k 1 , k 2 , … … , k n k 1 , k 2 , … … , k n k1,k2,……,knk1,k2,……,kn k_1,k_2,……,k_n k1,k2,,knk1,k2,,knk1,k2,,kndi是一组伪随机数列
注意
增量di应该具有以下特点(完备性):产生的Hi(地址)均不相同,且所产生的s(m-1)个Hi能覆盖hash表中的所有地址

  • 平方探测时表长m必须为4j+3的质数(平方探测表长有限制)
  • 随机探测时m和di没有公因子(随机探测di有限制)
    三种开放定址法解决冲突方案的例子

废话不多说,上例子就明白了
有一组数据
19 01 23 14 55 68 11 86 37要存储在表长11的数组中,其中H(key)=key MOD 11
那么按照上面三种解决冲突的方法,存储过程如下:
(表格解释:从前向后插入数据,如果插入位置已经占用,发生冲突,冲突的另起一行,计算地址,直到地址可用,后面冲突的继续向下另起一行。最终结果取最上面的数据(因为是最“占座”的数据))
线性探测再散列
我们取di=1,即冲突后存储在冲突后一个位置,如果仍然冲突继续向后

index 0 1 2 3 4 5 6 7 8 9 10
key 55 1 14 19 86
23冲突 23
68冲突 68冲突 68
11冲突 11冲突 11冲突 11冲突 11冲突 11
37冲突 37冲突 37
最终存储结果 55 1 23 14 68 11 37 19 86
**平方探测再散列**
index 0 1 2 3 4 5 6 7 8 9 10
key 55 1 14 37 19 86
23冲突 H(23)+1
H(68)-1冲突 68冲突 H(68)+1冲突 H(68)+4
11冲突 H(11)+1冲突 H(11)-1
最终存储结果 55 1 23 14 37 68 19 86 11
**随机探测在散列(双探测再散列)** 发生冲突后 H(key)‘=(H(key)+di)MOD m 在该例子中 H(key)=key MOD 11 我们取di=key MOD 10 +1 则有如下结果:
index 0 1 2 3 4 5 6 7 8 9 10
key 55 1 68 14 19 86
23冲突 H(23)+3+1
11冲突 H(11)+1+1冲突 H(11)+1+1+1+1
(H(37)+8)模11冲突 37冲突 (H(37)+8+8+8)模11 (H(37)+8+8)模11冲突
最终存储结果 55 1 68 14 23 11 37 19 86

链地址法

产生hash冲突后在存储数据后面加一个指针,指向后面冲突的数据
上面的例子,用链地址法则是下面这样:

这里写图片描述
四、hash表的查找

查找过程和造表过程一致,假设采用开放定址法处理冲突,则查找过程为:
对于给定的key,计算hash地址index = H(key)
如果数组arr【index】的值为空 则查找不成功
如果数组arr【index】== key 则查找成功
否则 使用冲突解决方法求下一个地址,直到arr【index】== key或者 arr【index】==null

hash表的查找效率

决定hash表查找的ASL因素:
1)选用的hash函数
2)选用的处理冲突的方法
3)hash表的饱和度,装载因子 α=n/m(n表示实际装载数据长度 m为表长)
一般情况,假设hash函数是均匀的,则在讨论ASL时可以不考虑它的因素
hash表的ASL是处理冲突方法和装载因子的函数
前人已经证明,查找成功时如下结果:

这里写图片描述
可以看到无论哪个函数,装载因子越大,平均查找长度越大,那么装载因子α越小越好?也不是,就像100的表长只存一个数据,α是小了,但是空间利用率不高啊,这里就是时间空间的取舍问题了。通常情况下,认为α=0.75是时间空间综合利用效率最高的情况。

上面的这个表可是特别有用的。假设我现在有10个数据,想使用链地址法解决冲突,并要求平均查找长度<2
那么有1+α/2 <2
α<2
即 n/m<2 (n=10)
m>10/2
m>5 即采用链地址法,使得平均查找长度< 2 那么m>5

之前我的博客讨论过各种树的平均查找长度,他们都是基于存储数据n的函数,而hash表不同,他是基于装载因子的函数,也就是说,当数据n增加时,我可以通过增加表长m,以维持装载因子不变,确保ASL不变。
那么hash表的构造应该是这样的:

这里写图片描述
五、hash表的删除

首先链地址法是可以直接删除元素的,但是开放定址法是不行的,拿前面的双探测再散列来说,假如我们删除了元素1,将其位置置空,那 23就永远找不到了。正确做法应该是删除之后置入一个原来不存在的数据,比如-1

[原文转自](https://blog.csdn.net/u011109881/article/details/80379505)

你可能感兴趣的:(数据结构与算法)