- OpenCV让Python实现人脸特征点检测
Python编程之道
Python编程之道opencvpython人工智能ai
OpenCV让Python实现人脸特征点检测关键词:OpenCV、Python、人脸检测、特征点定位、计算机视觉、Dlib、深度学习摘要:本文将深入探讨如何使用OpenCV和Python实现人脸特征点检测。我们将从基础概念开始,逐步介绍人脸检测和特征点定位的核心算法原理,包括传统的Haar级联检测器和基于深度学习的Dlib面部特征点检测器。文章将提供详细的代码实现和数学原理讲解,并通过实际项目案例
- OpenCV 三维重建实战:从工业检测到自动驾驶,3 大场景代码全解析
从零开始学习人工智能
opencv自动驾驶数码相机
:工业零部件三维建模与检测案例背景:在汽车制造工厂,对于复杂形状的发动机零部件质量检测与逆向工程需求,需要高精度的三维模型。传统检测方法效率低且精度有限,而三维重建技术可快速获取零部件三维信息,实现高效检测与设计优化。技术实现:使用多个相机从不同角度拍摄零部件,利用calib3d模块进行相机标定,获取准确的相机内参和外参。通过特征点检测与匹配算法(如SIFT、ORB等)找到不同图像间的对应点,再用
- 基于 OpenCV 和 DLib 实现面部特征调整(眼间距、鼻子、嘴巴)
机器学习算法
人工智能深度学习机器学习计算机视觉人工智能机器学习深度学习神经网络目标检测opencv
摘要本文介绍如何利用Dlib面部特征点检测和OpenCV图像处理技术,通过Python实现面部特征的精准调整。我们将以改变眼间距为例,演示包括地标检测、三角剖分变形等关键技术,该方法可扩展至嘴唇、眉毛等面部特征的调整。技术栈Python3.8+OpenCV4.xDlib19.24NumPySciPy实现步骤1.环境准备import cv2import dlibimport numpy as npf
- 计算机视觉中的可重复性:深入案例分析与Python代码实现
风清扬雨
计算机视觉人工智能计算机视觉pythonopencv
✨宝子们,今天咱们来聊聊计算机视觉领域里一个非常重要的概念——可重复性。特别是在特征点检测中,如何确保在不同条件下(如不同的视角、光照等)能够稳定地检测到相同的特征点是一个关键问题。让我们通过一个具体的案例,深入了解如何衡量和实现这一目标吧!一、什么是可重复性?在计算机视觉中,可重复性指的是在不同条件下对同一场景进行特征提取时,算法能够识别出相同或相似的关键点的能力。高可重复性意味着算法在各种变化
- ORB特征点检测
小白的进阶
特征点检测特征点检测ORBopencvC++
这篇文章我们将介绍一种新的具有局部不变性的特征——ORB特征,从它的名字中可以看出它是对FAST特征点与BREIF特征描述子的一种结合与改进,这个算法是由EthanRublee,VincentRabaud,KurtKonolige以及GaryR.Bradski在2011年一篇名为“ORB:AnEfficientAlternativetoSIFTorSURF”的文章中提出。就像文章题目所写一样,OR
- ORB特征检测
东东咚咚东
OpenCV目标检测图像处理视觉检测
ORB,全称OrientedFASTandRotatedBRIEF,是一种快速特征点提取和描述的算法。计算速度比SIFT快百倍,比SUFT快10倍。从名称中可以看出,ORB本质是FAST角点检测算法和BRIEF特征描述符的集合。为什么要这样子呢?因为FAST特征点检测不涉及特征点描述,而BRIEF特征描述符有不具备旋转不变性、不具备尺度不变性、对噪声敏感等缺点,将二者结合可以优势互补,劣势相消。#
- Python实现人脸轮廓提取
闲人编程
图像处理python开发语言人脸轮廓Dilb
目录一、背景知识1.1人脸检测和轮廓提取的意义1.2人脸检测方法概述1.3轮廓提取方法概述二、常用的人脸轮廓提取方法2.1基于边缘检测的轮廓提取2.2基于形态学操作的轮廓提取2.3基于特征点检测的轮廓提取三、Python实现人脸轮廓提取3.1安装依赖库3.2使用Dlib进行人脸检测和特征点提取3.3代码详解3.4使用轮廓提取进行人脸分割四、实验结果与分析五、应用与挑战5.1应用场景5.2技术挑战六
- 【菜狗学三维重建】Slam对极几何实战—从两张未知相机内参的图片计算出来相机Rt——20250413
小狗照亮每一天
数码相机计算机视觉深度学习笔记opencv人工智能
目录任务1、读取图像2、特征点检测与匹配3、从匹配的对应点中选择八个点4、求解F矩阵(没有内参信息用基础矩阵F来求Rt)之前有一篇关于原理方面的视觉slam三维重建的文章,现在来实战一下,将书本上的知识转化为代码实现一下“视觉里程计-对极几何-2D-2D”。任务从两张未知相机内参的图片计算出来相机R,t。1、读取图像importcv2#读取两张图像a=cv2.imread("00010.jpg")
- 计算机视觉基础4——特征点及其描述子
DUTBenjamin
计算机视觉计算机视觉人工智能
一、特征点检测(一)特征点定义图像中具有独特局部性质的点。(二)特征点性质具有局部性(对遮挡和混乱场景鲁棒)、数量足够多(一幅图像可产生成百上千个)、独特性(能与其他图像中大多数点区分开)、高效性(可实时检测和比较)、可重复性(图像旋转平移等操作后仍能被检测到)。(三)角点检测数学表示在以角点(x0,y0)(x_{0},y_{0})(x0,y0)为中心的局部窗口WWW内,窗口经(u,v)(u,v)
- 【秣厉科技】LabVIEW工具包——OpenCV 教程(16):图像缝合
秣厉科技
秣厉科技-LabVIEW-OpenCV科技labviewopencv
文章目录前言stitching模块图像缝合总结前言需要下载安装OpenCV工具包的朋友,请前往此处;系统要求:Windows系统,LabVIEW>=2018,兼容32位和64位。stitching模块stitching模块是OpenCV中用于图像拼接的一个核心模块。该功能主要通过Stitcher类实现,该类封装了图像拼接的各个步骤,包括特征点检测、特征匹配、图像配准、图像投影和融合等。deta
- Opencv 图像处理相关API
AndSonder
小白的ai学习之路opencv
opencv文章目录opencv图像基本操作图像平滑处理均值滤波高斯滤波中值滤波双边滤波图像阈值处理简单阈值化处理自适应阈值化处理图像形态学处理腐蚀(erosion)膨胀(dilation)开运算(MORPH_OPEN)与闭运算(MORPH_CLOSE)图像轮廓处理边缘检测亮度提升角点检测图像识别特征点检测特征值矩阵物体识别图像基本操作importnumpyasnpimportcv2ascv#读取
- cv2 orb 图像拼接_图像拼接Opencv源码重构
是佐罗而非索隆
cv2orb图像拼接
请看赵春江https://me.csdn.net/zhaocj的主页,他已经对Opencv图像拼接流程中的代码做了很详细的解释。前人栽树,后人乘凉。一.本文所做的事1.重构了Opencv图像拼接的源代码,整个代码是面向过程的;2.在赵春江源码分析基础上,对一些细节部分进行说明。代码链接:https://github.com/mhhai/ImageStitch二.特征点检测一切起源于这段代码Ptrf
- VSLAM新方案之《在复杂环境中实现高精度与超强鲁棒性》
OAK中国_官方
SLAM人工智能rpab-map
OAKChina&苏州泛科特机器人联合推出OAK-DSeries&因子空间感知(FactorPerceptionKit)VSLAM解决方案01FactorPerceptionKit简介FactorPerceptionKit是一种真正基于深度学习技术的VSLAM方案,不同于许多厂商仅通过添加目标检测或语义分割模型来实现额外功能,我们直接在SLAM底层使用HF-Net模型,该模型同时进行局部特征点检测
- 【openCV-89】人脸检测
华东算法王
华东算法王-opencvopencv人工智能计算机视觉
人脸检测简介人脸检测是计算机视觉中的一个重要任务,旨在从图像或视频中识别并定位出人脸的位置。人脸检测不仅是人脸识别、表情分析、面部特征点检测等高级任务的前置步骤,而且在安防监控、智能家居、自动驾驶等多个领域都具有广泛应用。人脸检测的目标人脸检测的目标是从输入的图像或视频流中自动检测出所有人脸的区域,通常用矩形框(boundingbox)表示人脸的位置。人脸检测不仅要识别图像中的人脸,还要在各种条件
- 【OpenCV-Python】——哈里斯/Shi-Tomas角检测&FAST/SIFT/ORB特征点检测&暴力/FLANN匹配器&对象查找
柯宝最帅
OpenCV学习计算机视觉人工智能
目录前言:1、角检测1.1哈里斯角检测1.2优化哈里斯角1.3Shi-Tomasi角检测2、特征点检测2.1FAST特征点检测2.2SIFT特征检测2.3ORB特征检测3、特征匹配3.1暴力匹配器3.2FLANN匹配器4、对象查找总结:前言:图像的特征是指图像中具有独特性和易识别性的区域,如角和边缘等。提取特征并对其进行描述,便于图像匹配和搜索。1、角检测1.1哈里斯角检测cv2.conerHar
- 【Python三方库】Python机器学习开源库之dlib库的简介、安装、使用方法、示例代码、注意事项等详细攻略
I'mAlex
Python三方库python机器学习开源
dlib是一个强大且多功能的库,广泛应用于计算机视觉领域。本文详细介绍了dlib的简介、安装及使用方法,包括面部检测、特征点检测和人脸识别等功能。通过这些基本功能的示例,你可以逐步深入了解并实际应用dlib库,解决更多复杂的计算机视觉问题。掌握dlib库不仅能提升你的编程技能,还能为你以后在计算机视觉领域的研究与应用打下坚实的基础。希望这篇文章能让你更好地理解和使用dlib库,开启你的计算机视觉之
- OpenCV实战技术应用
yzx991013
OpenCV基础全集opencv人工智能计算机视觉
10.0角点检测应用技术实现,使用SIFT算法进行特征点检测并绘制。结果:实现过程:解析过程:1.导入模块:importcv2:导入opencv库,用于图像处理操作,包括图像读取、特征提取、图像绘制、匹配等。importnumpyasnp:导入numpy库,用于处理数组数据,在特征描述符的存储和处理中可能会用到。2.函数定义:sift_tz():功能:使用SIFT算法进行特征点检测并绘制。实现:i
- opencv “未声明的标识符:SurfFeatureDetector”问题解决办法
adsdriver
Opencv学习点滴opencv特征点检测未声明的标识符SurfFeaturDetector
在VS中使用opencv2.4.X版本的时候,如果使用SurfFeatureDetector(或者SiftFeatureDetector)做特征点检测的时候,按照官方文档上的示例代码include头文件为:opencv2/features2d/features2d.hpp,则会出现如下报错:errorC2065:“SurfFeatureDetector”:未声明的标识符。1、实际上2.4.X版本的
- HOG特征
ce0b74704937
HOG特征是在文章《HistogramsofOrientedGradientsforHumanDetection》中提出,看文章标题可知,该文章是为了行人检测提出的,不过后来也用于其它方向,比如特征点检测等。该文中行人检测大概分为以下几步:输入图像(行人的图像)采用Gamma矫正法对输入图像进行颜色空间的标准化;目的是调节图像的对比度,降低图像局部的阴影和光照所造成的影响,同时可以抑制噪声。(原文
- 【北邮鲁鹏老师计算机视觉课程笔记】06 corner 局部特征
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】06corner局部特征1局部特征的任务牵引:全景拼接①提取特征②匹配特征③拼接图像我们希望特征有什么特性?①可重复性②显著性③计算效率和表达紧凑性④局部性2特征点检测的任务3角点在角点,往任意方向移动窗体都会发生变化4角点检测的数学描述用泰勒展开,建立E(u,v)和(u,v)的直接关系E(u,v)是移动都得变化差异,(u,v)是移动量理解M矩阵与E(u,v)的关
- SLAM相关
星海之眸
特征点检测的算法更新针对前期关键点检测的算法更新:链接特征点的提取效果:algro_rlt.png对VO的效果提升:vo-rlt.png其他方法
- 数字图像处理(实践篇)三十六 OpenCV-Python 使用ORB和BFmatcher对两个输入图像的关键点进行匹配实践
Jackilina_Stone
数字图像处理(入门篇实践篇综合篇)数字图像处理pythonOpenCV
目录一涉及的函数二实践ORB(OrientedFASTandRotatedBRIEF)是一种特征点检测和描述算法,它结合了FAST关键点检测和BRIEF描述子。ORB算法具有以下优势:①实时性:能够在实时应用中进行快速的特征点检测和描述。②
- opencv学习-几种角点检测方法
wyw0000
opencvopencv学习计算机视觉
角点基本概念角点通常被定义为两条边的交点,或者说,角点的局部邻域应该具有两个不同区域的不同方向的边界。角点检测(CornerDetection)是计算机视觉系统中获取图像特征的一种方法,广泛应用于运动检测、图像匹配、视频跟踪、三维重建和目标识别等,也可称为特征点检测。目前,角点检测算法还不是十分完善,许多算法需要依赖大量的训练集和冗余数据来防止和减少错误的特征的出现。对于角点检测算法的重要评价标准
- 吴恩达卷积神经网络学习笔记(六)|CSDN创作打卡
墨倾许
深度学习神经网络计算机视觉
3.2特征点检测神经网络可以通过输出图片上特征点的(x,y)坐标,来实现对目标特征的识别。我们来看几个例子,假设你正在构建一个人脸识别应用,出于某种原因,你希望算法可以给出眼角的具体位置,眼角坐标为(x,y),你可以让神经网络的最后一层,多出两个数字lx和ly,作为眼角的坐标值.如果你想知道两只眼睛的4个眼角的具体位置,那么从左到右依次用4个特征点来表示这4个眼角,对神经网络稍微做些修改,输出第1
- SuperPoint和SuperGlue 的算法介绍及学习应用经验分享
醉酒柴柴
算法学习笔记论文阅读
这里写目录标题I.SuperPoint和SuperGIue的背景介绍特征点提取和匹配特征点的构成基于神经网络的方法优化方向一:增强特征点检测和描述子生成优化方向二:增强匹配和外点去除策略背景和效果神经网络真的优于传统方案吗?DEMO演示为什么研究2.SuperPoint学习经验分享整体架构核心技术1.自适应单应变换2Encoder-Decoder的网络结构a·输入是一张图像b·经过一个Encode
- 【论文总结】基于深度学习的特征点提取,特征点检测的方法总结
醉酒柴柴
深度学习人工智能学习笔记论文阅读
这里写目录标题相关工作1.DiscriminativeLearningofDeepConvolutionalFeaturePointDescriptors(2015)网络结构sift算法损失函数的构建2.MatchNet(2015)网络中的组成部分其他组成部分损失函数结果3.LIFT:LearnedInvariantFeatureTransform(2016)网络结构训练网络结构损失函数训练和测试
- 特征点检测和特征点匹配(ORB)
瓴龍
CV计算机视觉opencv
前言本文介绍了特征点检测的一些算法,然后基于OpenCV的ORB,实现了不同尺度和旋转的图像特征点匹配。本文用到的代码存储在这里。特征点是什么?当我们人在对比两张图片时(例如上面的妙蛙种子),我们可以轻而易举地找到两张图片的相似性,尽管我们很难去刻画这种相似性,但是这种观察力却是天生具备的。而对于计算机来说,必须要用它能够理解的方式才能区分图片。考虑如下三种区域类型:平坦区域(flat):图中蓝色
- 【源码精读】As-Projective-As-Possible Image Stitching with Moving DLT(APAP)第一部分:全局单应Global homography
十小大
图像拼接论文源码精读matlab计算机视觉图像拼接APAPimagestitching
文章目录前言准备工作与全局变量基于全局单应的图像拼接过程1.读入图像,特征点检测与匹配2.数据归一化,RANSAC剔除异常值3.计算全局单应,获取拼接图大小,拼接4.加权融合总结前言论文及源码地址:APAP项目入口论文精读:【论文精读】As-Projective-As-PossibleImageStitchingwithMovingDLT源码用的MDLTcode,解压后的文件夹是mdlt注意,ma
- 瞳孔检测眼动追踪python实现(基于dlib)
chari克里
python图像处理眼动追踪瞳孔检测dlib
效果展示:原图:(图片来自b站up借我300去洗牙)dlib实现的特征点检测瞳孔检测结果完整代码:#encoding:utf-8importdlibimportnumpyasnpimportcv2defrect_to_bb(rect):#获得人脸矩形的坐标信息x=rect.left()y=rect.top()w=rect.right()-xh=rect.bottom()-yreturn(x,y,w
- 使用dlib简单进行人脸特征点检测和换脸
默默努力的小老弟
图像处理图像处理
0.出于好奇,思考中想要把2维图像怎么转化为3维图像,我在考虑怎么把草莓二维转为三维图像,这个领域其实早有人研究了,术语叫三维重建,使用matlab可以实现三维坐标标点来表达,后来我发现一个很好玩的事情就是我看到直播有人卖替换人脸和换装的程序,我就想试试怎么实现换脸…//matlabimportcv2importnumpyasnpfrommpl_toolkits.mplot3dimportAxes
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默