linux设备:cdev和kobj_map

原文地址:linux设备:cdev和kobj_map 作者:zengxg14

这只是看代码时的记录,完后会统一整理,希望会这样吧。

Linux kernel v3.6.7

先看kobj_map相关的代码
涉及到的文件
typedef struct kobject *kobj_probe_t(dev_t, int *, void *);
struct kobj_map;
int kobj_map(struct kobj_map *, dev_t, unsigned long, struct module *, kobj_probe_t *, int (*)(dev_t, void *), void *);
void kobj_unmap(struct kobj_map *, dev_t, unsigned long);
struct kobject *kobj_lookup(struct kobj_map *, dev_t, int *);
struct kobj_map *kobj_map_init(kobj_probe_t *, struct mutex *);

先看kobj_map结构体
struct kobj_map {
    struct probe {
        struct probe *next;      /* 这样形成了链表结构 */
        dev_t dev;               /* 设备号 */
        unsigned long range;     /* 设备号的范围 */
        struct module *owner;
        kobj_probe_t *get;
        int (*lock) (dev_t, void *);
        void *data;              /* 指向struct cdev对象 */
    } *probes[255];
    struct mutex *lock;
}
结构体中有一个互斥锁lock,一个probes[255]数组,数组元素为struct probe的指针。
根据下面的函数作用来看,kobj_map结构体是用来管理设备号及其对应的设备的。
kobj_map函数就是将指定的设备号加入到该数组,kobj_lookup则查找该结构体,然后返回对应设备号的kobject对象,利用
利用该kobject对象,我们可以得到包含它的对象如cdev。
struct probe结构体中的get函数指针就是用来获得kobject对象的,可能不同类型的设备获取的方式不同,我现在就看过cdev的exact_match函数。

kobj_map函数
int kobj_map(struct kobj_map *domain, dev_t dev, unsigned long range, struct module *module, kobj_probe_t *probe, int (*lock)(dev_t, void *), void *data)
{
    unsigned n = MAJOR(dev+range-1) - MAJOR(dev) + 1;
    unsigned index = MAJOR(dev);
    unsigned i;
    struct probe *p;

    if (n > 255)     /* 若n > 255,则超出了kobj_map中probes数组的大小 */
        n = 255;
    p = kmalloc(sizeof(struct probe) * n, GFP_KERNEL);  /* 分配n个struct probe */
    if(p == NULL)
        return -ENOMEM;
    for(i = 0; i < n; i++, p++) {     /* 用函数的参数初始化probe */
        p->owner = module;
        p->get = probe;
        p->lock = lock;
        p->dev = dev;
        p->range = range;
        p->data = data;
    }
    mutex_lock(domain->lock);
    for(i = 0, p-=n; i < n; i++, p++, index++) {
        struct probe **s = &domain->probes[index % 255];
        while(*s && (*s)->range < range)
            s = &(*s)->next;
        p->next = *s;
        *s = p;
    }
    mutex_unlock(domain->lock);
    return 0;
}

dev_t的前12位为主设备号,后20位为次设备号。
n = MAJOR(dev + range - 1) - MAJOR(dev) + 1 表示设备号范围(dev, dev+range)中不同的主设备号的个数。
通常n的值为1。
从代码中的第二个for循环可以看出kobj_map中的probes数组中每个元素为一个struct probe链表的头指针。
每个链表中的probe对象有(MAJOR(probe.dev) % 255)值相同的关系。若主设备号小于255, 则每个链表中的probe都有相同的主设备号。
链表中的元素是按照range值从小到大排列的。
while循环即是找出该将p插入的位置。



kobj_unmap函数
void kobj_unmap(struct kobj_map *domain, dev_t dev, unsigned long range)
{
    unsigned n = MAJOR(dev + range - 1) - MAJOR(dev) + 1;
    unsigned index = MAJOR(dev);
    unsigned i;
    struct probe *found = NULL;

    if (n > 255)
        n = 255;

    mutex_lock(domain->lock);
    for (i = 0; i < n; i++, index++) {
        struct probe **s;
        for (s = &domain->probes[index % 255]; *s; s = &(*s)->next) {
            struct probe *p = *s;
            if (p->dev == dev && p->range == range) {
                *s = p->next;
                if (!found)
                    found = p;
                break;
            }
        }
    }
    mutex_unlock(domain->lock);
    kfree(found);
}
在16行,找到对应设备号dev和range指定的probe对象后,退出,然后kfree释放空间。


kobj_lookup函数
struct kobject *kobj_lookup(struct kobj_map *domain, dev_t dev, int *index)
{
    struct kobject *kobj;
    struct probe *p;
    unsigned long best = ~0UL;

retry:
    mutex_lock(domain->lock);
    for (p = domain->probes[MAJOR(dev) % 255]; p; p = p->next) {
        struct kobject *(*probe)(dev_t, int *, void *);
        struct module *owner;
        void *data;

        if (p->dev > dev || p->dev + p->range - 1 < dev)
            continue;
        if (p->range - 1 >= best)
            break;
        if (!try_module_get(p->owner))
            continue;
        owner = p->owner;
        data = p->data;
        probe = p->get;
        best = p->range - 1;
        *index = dev - p->dev;   /* 这个是用来干嘛的? */
        if (p->lock && p->lock(dev, data) < 0) {
            module_put(owner);
            continue;
        }
        mutex_unlock(domain->lock);
        kobj = probe(dev, index, data);
        /* Currently ->owner protects _only_ ->probe() itself. */
        module_put(owner);
        if (kobj)
            return kobj;
        goto retry;
    }
    mutex_unlock(domain->lock);
    return NULL;
}

对cdev_add函数,这里的p->probe函数即是exact_match, p->lock为exact_lock函数。


kobj_map_init函数
struct kobj_map *kobj_map_init(kobj_probe_t *base_probe, struct mutex *lock)
{
    struct kobj_map *p = kmalloc(sizeof(struct kobj_map), GFP_KERNEL);
    struct probe *base = kzalloc(sizeof(*base), GFP_KERNEL);
    int i;

    if ((p == NULL) || (base == NULL)) {
        kfree(p);
        kfree(base);
        return NULL;
    }

    base->dev = 1;
    base->range = ~0;
    base->get = base_probe;
    for (i = 0; i < 255; i++)
        p->probes[i] = base;
    p->lock = lock;
    return p;
}

在初始化一个kobj_map对象时,将probes指针全部指向同一个base。



下面是cdev部分。
文件:

cdev.h
struct cdev {
    struct kobject kobj;
    struct module *owner;
    const struct file_operations *ops;
    struct list_head list;
    dev_t dev;
    unsigned int count;
}
void cdev_init(struct cdev *, const struct file_operations *);
struct cdev *cdev_alloc(void);
void cdev_put(struct cdev *p);
int cdev_add(struct cdev *, dev_t, unsigned);
void cdev_del(struct cdev *);

cdev_init函数
此函数首先调用kobject_init初始化cdev中的kobj,然后将cdev中的ops赋值。

cdev_alloc函数
先kzalloc分配一个cdev,然后用kobject_init初始化kobj

cdev_put函数

void cdev_put(struct cdev *p)
{
    if (p) {
        struct module *owner = p->owner;
        kobject_put(&p->kobj);
        module_put(owner);
    }
}

此函数调用kobject_put和module_put,好像它们的作用就是减少引用计数

cdev_add函数
int cdev_add(struct cdev *p, dev_t dev, unsigned count)
{
    p->dev = dev;
    p->count = count;
    return kobj_map(cdev_map, dev, count, NULL, exact_match, exact_lock, p);
}

主要是调用kobj_map将cdev放入cdev_map中。

cdev_del函数
static void cdev_unmap(dev_t dev, unsigned count)
{
    kobj_unmap(cdev_map, dev, count);
}

void cdev_del(struct cdev *p)
{
    cdev_unmap(p->dev, p->count);
    kobject_put(&p->kobj);
}

这就不用说啥了。

LDD3上说“只要cdev_add返回了,我们的设备就‘活’了,它的操作就会被内核调用",那么这句奇妙的话到底是个什么意思?

下面是我目前了解的情况

据说在open一个字符设备文件时,最终总会调用chrdev_open。
下面是该函数的源码
注意inode->i_rdev中保存了设备编号,inode->icdev指向了cdev结构。
static int chrdev_open(struct inode *inode, struct file *filp)
{
    struct cdev *p;
    struct cdev *new = NULL;
    int ret = 0;

    spin_lock(&cdev_lock);
    p = inode->i_cdev;
    if (!p) {
        struct kobject *kobj;
        int idx;
        spin_unlock(&cdev_lock);
        kobj = kobj_lookup(cdev_map, inode->i_rdev, &idx);   
        if (!kobj)
            return -ENXIO;
        new = container_of(kobj, struct cdev, kobj);   /* 找到字符设备的cdev */
        spin_lock(&cdev_lock);
        /* Check i_cdev again in case somebody beat us to it while
         we dropped the lock. */
        p = inode->i_cdev;
        if (!p) {
            inode->i_cdev = p = new;
            list_add(&inode->i_devices, &p->list);/* ZXG: 这是啥? */
            new = NULL;
        } else if (!cdev_get(p))
            ret = -ENXIO;
    } else if (!cdev_get(p))
        ret = -ENXIO;
    spin_unlock(&cdev_lock);
    cdev_put(new);
    if (ret)
        return ret;

    ret = -ENXIO;
    filp->f_op = fops_get(p->ops);
    if (!filp->f_op)
        goto out_cdev_put;

    if (filp->f_op->open) {
        ret = filp->f_op->open(inode, filp); /* 调用cdev->ops中的open函数 */
        if (ret)
            goto out_cdev_put;
    }

    return 0;

 out_cdev_put:
    cdev_put(p);
    return ret;
}



你可能感兴趣的:(驱动开发,字符设备驱动程序)