两层Makefile的书写方法,可以一次生成在X86和ARM运行的程序

首先,看下整个工程文件的结构图:

(1)主文件包含一个Makefile,一起对应的c源文件,还有子文件夹arm_client

两层Makefile的书写方法,可以一次生成在X86和ARM运行的程序_第1张图片

(2)子文件夹arm_client

两层Makefile的书写方法,可以一次生成在X86和ARM运行的程序_第2张图片

(3)先看一下子文件夹arm_client各个文件的内容:

client.c

/* 
client.c 
[root@FriendlyARM /home]# ./client
Response from server:
TCP TRANSPORTATION TEST!
*/

#include 
#include 
#include 
#include 
#include 
#include 

#include "../wrap.h"

#define MAXLINE 80
#define SERV_PORT 8888

int main(int argc, char *argv[])
{
    struct sockaddr_in servaddr;
    char buf[MAXLINE];
    int sockfd, n;
    char *str="TCP transportation test!";
  
    sockfd = Socket(AF_INET, SOCK_STREAM, 0);
    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    inet_pton(AF_INET, "192.168.1.108", &servaddr.sin_addr);
    servaddr.sin_port = htons(SERV_PORT);
    
    Connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr));
    Write(sockfd, str, strlen(str));
    n = Read(sockfd, buf, MAXLINE);
    printf("Response from server:\n");
    Write(STDOUT_FILENO, buf, n);
    printf("\n");
    Close(sockfd);
    return 0;
}


Makefile文件

CC = gcc
ARMCC = arm-linux-gcc

OTHER_HEADER = ../wrap.h
OTHER_SOURCE = ../wrap.c

all: client
client: client.c arm_wrap.o
	$(ARMCC) -o $@ client.c arm_wrap.o
	
arm_wrap.o:  $(OTHER_SOURCE) $(OTHER_HEADER)
	$(ARMCC) -c -o $@ $(OTHER_SOURCE)

clean:
	rm -f *.a *.o server client *~ 
说明:
Makefile文件依靠的是三个文件:client.c,还有上一级目录的wrap.c和wrap.h
不理解这个makefile写法的原理请参考我上篇文章: Makefile:依赖多个c文件的书写方式

http://blog.csdn.net/mashang123456789/article/details/9904561


(4)主文件各文件的内容

wrap.h

#ifndef _WRAP_H
#define _WRAP_H
/*
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
*/
#include 
#include 
#include 
void perr_exit(const char *s);
int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr);
int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr);
void Bind(int fd, const struct sockaddr *sa, socklen_t salen);
void Connect(int fd, const struct sockaddr *sa, socklen_t salen);
void Listen(int fd, int backlog);
int Socket(int family, int type, int protocol);
ssize_t Read(int fd, void *ptr, size_t nbytes);
ssize_t Write(int fd, const void *ptr, size_t nbytes);
void Close(int fd);
ssize_t Readn(int fd, void *vptr, size_t n);
ssize_t Writen(int fd, const void *vptr, size_t n);
static ssize_t my_read(int fd, char *ptr);
ssize_t Readline(int fd, void *vptr, size_t maxlen);


#endif

wrap.c

/*
#include 
#include 
#include 
*/
#include "wrap.h"

void perr_exit(const char *s)
{
        perror(s);
        exit(1);
}

int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr)
{
        int n;
again:
        if ( (n = accept(fd, sa, salenptr)) < 0) {
                if ((errno == ECONNABORTED) || (errno == EINTR))
                        goto again;
                else
                        perr_exit("accept error");
        }
        return n;
}

void Bind(int fd, const struct sockaddr *sa, socklen_t salen)
{
        if (bind(fd, sa, salen) < 0)
                perr_exit("bind error");
}

void Connect(int fd, const struct sockaddr *sa, socklen_t salen)
{
        if (connect(fd, sa, salen) < 0)
                perr_exit("connect error");
}

void Listen(int fd, int backlog)
{
        if (listen(fd, backlog) < 0)
                perr_exit("listen error");
}

int Socket(int family, int type, int protocol)
{
        int n;
        if ( (n = socket(family, type, protocol)) < 0)
                perr_exit("socket error");
        return n;
}

ssize_t Read(int fd, void *ptr, size_t nbytes)
{
        ssize_t n;
again:
        if ( (n = read(fd, ptr, nbytes)) == -1) {
                if (errno == EINTR)
                        goto again;
                else
                        return -1;
        }
        return n;
}

ssize_t Write(int fd, const void *ptr, size_t nbytes)
{
        ssize_t n;
again:
        if ( (n = write(fd, ptr, nbytes)) == -1) {
                if (errno == EINTR)
                        goto again;
                else
                        return -1;
        }
        return n;
}

void Close(int fd)
{
        if (close(fd) == -1)
                perr_exit("close error");
}

ssize_t Readn(int fd, void *vptr, size_t n)
{
        size_t  nleft;
        ssize_t nread;
        char   *ptr;
        ptr = vptr;
        nleft = n;
        while (nleft > 0) {
                if ( (nread = read(fd, ptr, nleft)) < 0) {
                        if (errno == EINTR)
                                nread = 0;
                        else
                                return -1;
                } else if (nread == 0)
                        break;
                nleft -= nread;
                ptr += nread;
        }
        return n - nleft;
}

ssize_t Writen(int fd, const void *vptr, size_t n)
{
        size_t nleft;
        ssize_t nwritten;
        const char *ptr;
        ptr = vptr;
        nleft = n;
        while (nleft > 0) {
                if ( (nwritten = write(fd, ptr, nleft)) <= 0) {
                        if (nwritten < 0 && errno == EINTR)
                                nwritten = 0;
                        else
                                return -1;
                }
                nleft -= nwritten;
                ptr += nwritten;
        }
        return n;
}

static ssize_t my_read(int fd, char *ptr)
{
        static int read_cnt;
        static char *read_ptr;
        static char read_buf[100];
        if (read_cnt <= 0) {
        again:
                if ( (read_cnt = read(fd, read_buf, 
sizeof(read_buf))) < 0) {
                        if (errno == EINTR)
                                goto again;
                        return -1;
                } else if (read_cnt == 0)
                        return 0;
                read_ptr = read_buf;
        }
        read_cnt--;
        *ptr = *read_ptr++;
        return 1;
}

ssize_t Readline(int fd, void *vptr, size_t maxlen)
{
        ssize_t n, rc;
        char    c, *ptr;
        ptr = vptr;
        for (n = 1; n < maxlen; n++) {
                if ( (rc = my_read(fd, &c)) == 1) {
                        *ptr++ = c;
                        if (c  == '\n')
                                break;
                } else if (rc == 0) {
                        *ptr = 0;
                        return n - 1;
                } else
                        return -1;
        }
        *ptr  = 0;
        return n;
}
以上两个文件被编译的两次,在子文件里面被编译成目标文件arm_wrap.o,在主文件里面被编译成wrap.o


server.c

/* 
server.c 
bind error: Address already in use
发生这种问题是由于端口被程序绑定而没有释放造成.
可以使用netstat -lp命令查询当前处于连接的程序以及对应的进程信息。
然后用ps pid 察看对应的进程,并使用kill pid 关闭该进程即可。
*/
#include 
#include 
#include 
#include 
#include 
#include  

#include "wrap.h"

#define MAXLINE 80
#define SERV_PORT 8888
int DEBUG=1; 

int main(void)
{
    struct sockaddr_in servaddr, cliaddr;
    socklen_t cliaddr_len;
    int listenfd, connfd;
    char buf[MAXLINE];
    char str[INET_ADDRSTRLEN];
    int i, n;
	 
	listenfd = Socket(AF_INET, SOCK_STREAM, 0);//open a network connection(IPV4 ,TCP)
if(DEBUG){    
    int on=1;//允许地址重用,端口可以马上重用
	setsockopt(listenfd, SOL_SOCKET,SO_REUSEADDR, &on, sizeof(on) );
	}
	bzero(&servaddr, sizeof(servaddr));//clear the struct
    servaddr.sin_family = AF_INET;
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
    servaddr.sin_port = htons(SERV_PORT);
	
    Bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr));//bind servaddr to socket
    Listen(listenfd, 20);//The maximum of clients who are waiting for connection is 20
    printf("Accepting connections ...\n");
    while (1) {
        cliaddr_len = sizeof(cliaddr);//cliaddr_len 是传入传出参数,每次调用accept前重新赋初值
        connfd = Accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddr_len);
        n = Read(connfd, buf, MAXLINE);
				
        printf("received from %s at Client PORT %d\n",
               inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)),
               ntohs(cliaddr.sin_port));//客户端的端口号是自动分配的
        printf("Response from client:\n");
	    Write(STDOUT_FILENO, buf, n);
		printf("\n");
        for (i = 0; i < n; i++){
                  //printf("%x",buf[i]);// if add this ,bind error
           buf[i] = toupper(buf[i]);//把收到的字符转换成大写字母发回去
		}       
				
        Write(connfd, buf, n);
        Close(connfd);
    }
}

Makefile文件

CC = gcc
ARMCC = arm-linux-gcc

all: server client

client: wrap.h
	make -C arm_client/ all	CC=$(ARMCC)
	cp arm_client/client .
	
server: server.c wrap.o
	$(CC) -o server server.c wrap.o

wrap.o:  wrap.c wrap.h
	$(CC) -c -o $@ wrap.c	
	
clean:
	make -C arm_client/ $@
	rm -f *.a *.o server client *~ 
这个Makefile文件做两件事:

第一:生成能在X86上运行的server可执行文件

第二:生成能在ARM上运行的client可执行文件,并吧client从arm_client文件里面复制到当前文件夹






你可能感兴趣的:(两层Makefile的书写方法,可以一次生成在X86和ARM运行的程序)