运用pandas将字典的列表转化为独立的数据列

在Stack Overflow看到的一个帖子
table0.csv数据集如下:

name status number message
matt active 12345 [job:  , money: none, wife: none]
james active 23456 [group: band, wife: yes, money: 10000]
adam inactive 34567 [job: none, money: none, wife:  , kids: one, group: jail]
但现在我想处理数据得到如下的table:
运用pandas将字典的列表转化为独立的数据列_第1张图片

方法一:

首先通过replace(\s+代表一个及以上空格),将list of dict 转化为set of dict 然后使用ast

import ast
df.message = df.message.replace([':\s+,','\[', '\]', ':\s+', ',\s+'], ['":"none","', '{"', '"}', '":"', '","'], regex=True)
df.message = df.message.apply(ast.literal_eval)
df1 = pd.DataFrame(df.pop('message').values.tolist(), index=df.index)

print (df1)

   kids  money group   job  money  wife
0   NaN   none   NaN  none    NaN  none
1   NaN    NaN  band   NaN  10000   yes
2   one    NaN  jail  none   none  none

问题来了因为‘money’在第二行的message中是第三个dict,不同于其他两行在第二个dict,

因此会产生两列‘money’。这时候需要我们手动修改,不展开了。

所以按正常的操作得到如下:

df=pd.concat([df,df1],axis=1)

print(df)

 
  
    name    status  number  kids  money group   job  money  wife
0   matt    active   12345   NaN   none   NaN  none    NaN  none
1  james    active   23456   NaN    NaN  band   NaN  10000   yes
2   adam  inactive   34567   one    NaN  jail  none   none  none

方法二:

使用yaml包

import yaml
df.message = df.message.replace(['\[','\]'],['{','}'], regex=True).apply(yaml.load)
df1 = pd.DataFrame(df.pop('message').values.tolist(), index=df.index)
print (df1)

 
  
  group   job kids  money  wife
0   NaN  None  NaN   none  none
1  band   NaN  NaN  10000  True
2  jail  none  one   none  None
df = pd.concat([df, df1], axis=1)

print (df)

    name    status  number group   job kids  money  wife
0   matt    active   12345   NaN  None  NaN   none  none
1  james    active   23456  band   NaN  NaN  10000  True
2   adam  inactive   34567  jail  none  one   none  Non


源地址:
https://stackoverflow.com/questions/43032182/pandas-list-of-dictionary-to-separate-columns

你可能感兴趣的:(工程)