- 时间序列分析的军火库:AutoTS、Darts、Kats、PaddleTS、tfts 和 FancyTS解析
赛卡
大数据人工智能深度学习python概率论数学建模
引言:时间序列分析的现代挑战时间序列分析在多个领域中扮演着关键角色,包括工程、金融、气象、工业预测等。随着开源工具的快速发展,开发者可以通过多种库快速实现时间序列预测与分析。本文将对AutoTS、Darts、Kats、PaddleTS、tfts和FancyTS六大主流库进行详细解析,并提供代码示例,帮助你根据实际需求选择最佳工具。核心库技术解析与场景化实践1.AutoTS:自动化时间序列预测技术亮
- 金融时间序列分析(Yahoo Finance API实战)
闲人编程
Python数据分析实战精要金融yfinance时间序列波动率数据归一化数据分析Dash
这里写目录标题金融时间序列分析(YahooFinanceAPI实战)1.引言2.项目背景与意义3.数据集介绍4.GPU加速在数据处理中的应用5.交互式GUI设计与加速处理6.系统整体架构7.数学公式与指标计算8.完整代码实现9.代码自查与BUG排查10.总结与展望金融时间序列分析(YahooFinanceAPI实战)1.引言在当今金融市场中,时间序列数据分析是理解股票、指数以及其他金融产品走势的重
- DeepSeek 高阶应用技术详解(4)
Evaporator Core
#DeepSeek快速入门DeepSeek进阶开发与应用deepseek
1.引言在前三篇中,我们探讨了DeepSeek的基础功能、分布式训练、模型优化、模型解释性、超参数优化以及AutoML的应用。本篇将深入探讨DeepSeek在时间序列分析、图神经网络(GNN)和推荐系统中的应用。这些领域是深度学习的前沿方向,具有广泛的实际应用价值。2.DeepSeek在时间序列分析中的应用2.1时间序列分析简介时间序列分析是处理时间相关数据的重要技术,广泛应用于金融、气象、医疗等
- 基于 RAG(检索增强生成)、KAG(知识感知生成)和 CoT(链式思维)的生成式语言模型驱动推荐系统
路人与大师
语言模型人工智能自然语言处理
一、系统架构详解1.输入层a.用户行为数据数据来源:网站浏览历史、购物车内容、购买记录、收藏夹、搜索记录等。处理方式:数据清洗、去重、时间序列分析,提取用户的长期和短期兴趣。特征工程:行为序列:用户行为的时间顺序,如最近浏览的商品类别。频率与时长:浏览某类商品的频率和时长。转化率:从浏览到购买的转化情况。b.商品数据数据来源:商品数据库,包括价格、品牌、类别、库存、评价、销量等。处理方式:标准化处
- 深度强化学习算法在金融交易决策中的优化应用【附数据】
算法与数据
算法
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- Python+Spark地铁客流数据分析与预测系统 地铁大数据 地铁流量预测
qq_79856539
javaweb大数据pythonspark
本系统基于大数据设计并实现成都地铁客流量分析系统,使用网络爬虫爬取并收集成都地铁客流量数据,运用机器学习和时间序列分析等方法,对客流量数据进行预处理和特征选择,构建客流量预测模型,利用历史数据对模型进行训练和优化,实现客流量预测模型的部署和应用,通过系统界面展示预测结果。对预测模型进行评估和验证,并提出改进方案。设计步骤使用Python语言编写爬虫程序采集数据,并对原始数据集进行预处理;使用Pyt
- matlab 延迟算子,时间序列分析-----2---时间序列预处理
这块必被安排
matlab延迟算子
既然有了序列,那怎么拿来分析呢?时间序列分析方法分为描述性时序分析和统计时序分析。1、描述性时序分析通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。2、统计时序分析(1)频域分析方法原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动发展过程:1)早期的频
- 【转】时间序列分析——基于R,王燕
weixin_30780221
r语言
《时间序列分析——基于R》王燕,读书笔记笔记:一、检验:1、平稳性检验:图检验方法:时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加,平稳序列的自相关系数ρ会很快地衰减向0(指数级衰减),反之非平稳序列衰减速度会比较慢构造检验统计量进行假设检验:单位根检验adfTest()——fUnitRoots包2、纯随机性检验、
- 时间序列分析之AR、MA、ARMA、ARIMA详解(5)
白马负金羁
机器学习之术协整cointegrationARIMA时间序列分析
在时间序列分析中最常使用的一系列模型:AR、MR、ARMA,一直到ARIMA,都源于乔治·博克斯和格威利姆·詹金斯等人的一系列工作(他们的有关成果后汇集成该领域的权威经典著作【1】)。乔治·博克斯被认为是二十世纪的一代统计学大师,他有一句广为人知的名言:所有的模型都是错误的,但有一些是有用的(“Allmodelsarewrong,butsomeareuseful”)。为了让统计模型发挥作用,深入理
- 小波变换系数计算实例_时间序列小波分析的操作步骤及实例分析
与何人说
小波变换系数计算实例
小波分析实例时间序列(TimeSeries)是地学研究中经常遇到的问题。在时间序列研究中,时域和频域是常用的两种基本形式。其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析。河川径流是地理水文学研究中的一个重要变量,而多时间尺度是径流演化过程中存在的重要特征。所谓径流时间序列的多时间尺度是指:河川
- 预测股票走势的ai模型
roxxo
AI模型人工智能深度学习金融
AI股票走势预测模型用深度学习+时间序列分析来构建一个股票预测AI,基于历史数据预测未来走势。1.关键功能✅AI选股(基于财务数据+技术指标)✅股票走势预测(LSTM/Transformer)✅智能筛选高增长潜力股✅可视化分析2.关键技术数据来源:YahooFinance/AlphaVantage财务分析:PE、EPS、ROE、PB、成交量机器学习选股:随机森林/XGBoost深度学习预测:LST
- 时间序列分析 | Python实现时间序列不确定性建模
前程算法屋
时间序列分析(Python)不确定性建模python深度学习机器学习时间序列数据分析
时间序列分析|Python实现时间序列不确定性建模目录时间序列分析|Python实现时间序列不确定性建模基本介绍研究方法概率分布建模分位数回归学习总结基本介绍基础的时间序列预测任务的目标是给定历史序列,预测未来每个时间点的具体值。这种问题定义虽然简单直接,但是也面临着一些问题。在很多应用场景中,我们不仅希望能预测出未来的具体值,更希望能预测出未来取值不确定性,例如一个概率分布或者取值范围。在很多应
- 一文掌握什么是时间序列?时间序列研究的核心任务?目前最强大的时序分析与建模工具和项目?
幸运 lucky
人工智能学习之路时间序列核心任务时序分析与建模工具和项目SOTA
CSDN叶庭云:https://yetingyun.blog.csdn.net/什么是时间序列?时间序列是一系列按照时间顺序排列的数据点,这些数据点通常是随时间连续变化的测量值。时间序列分析是统计学中专门用于解析时间顺序数据的一套技术,旨在识别数据中的模式、趋势、季节性波动及其他潜在的周期性特征。然而,当前,机器学习与深度学习方法在这一领域的应用正日益受到青睐。时间序列数据可以来源于各种领域,如经
- 【时序分析】使用skforecast进行时间序列预测并分享14个Python时间序列分析库
镰刀韭菜
深度学习与机器学习python时间序列分析skforecastTimeGPTtsfreshAutoTS递归多步预测
使用skforecast进行时间序列预测并分享14个Python时间序列分析库1.时间序列分析基础2.多步时间序列预测2.1递归多步预测2.2直接多步预测2.3多输出预测3.实战:使用skforecast进行时间序列预测3.1使用skforecast进行递归自回归预测1ForecasterAutoreg2回溯测试3预测器重要性3.2使用skforecast进行外生变量的递归自回归预测3.3使用sk
- torch.nn.RNN: PyTorch 中的循环神经网络(RNN)模块
彬彬侠
自然语言处理RNNPyTorchPython循环神经网络NLP自然语言处理
torch.nn.RNN:PyTorch中的循环神经网络(RNN)模块1.概述在PyTorch中,torch.nn.RNN是一个用于构建循环神经网络(RNN)的模块。它提供了一个可以进行训练的RNN层,广泛应用于序列数据的建模,如自然语言处理、时间序列分析等。这个模块可以处理各种类型的序列数据,并支持多种功能和配置。2.主要功能torch.nn.RNN可以:处理序列数据,捕捉时间上的依赖关系。支持
- Python的第三方库pandas
y_bccl27
Pythonpython
1.pandas的介绍pandas是Python的一个数据分析包,最初由AQRCapitalManagement于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发团队继续开发和维护,属于PyData项目的一部分。pandas最初被作为金融数据分析工具而开发出来,因此pandas为时间序列分析提供了很好的支持。pandas的名称来自于面板数据(pan
- PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(NeuralODEs)是深度学习领域的创新性模型架构,它将神经网络的离散变换扩展为连续时间动力系统。与传统神经网络将层表示为离散变换不同,NeuralODEs将变换过程视为深度(或时间)的连续函数。这种方法为机器学习开创了新的研究方向,尤其在生成模型、时间序列分析和物理信息学习等领域具有重要应用。本文将基于Torchdyn(一个专门用于连续深度学习和平衡模型的PyTorch扩展库)
- 2025年美赛数学建模2025 MCM Problem A: Testing Time: The Constant Wear On Stairs A题 测试时间:楼梯上的持续磨损 代码解析
2025年数学建模美赛
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025数学建模美赛A题2025楼梯上的持续磨损matlab代码
目录Python1.数据预处理与特征工程数据标准化与特征构建2.行进方向偏好分析深度神经网络(DNN)用于方向性分析3.多人同时使用分析卷积神经网络(CNN)用于磨损模式识别4.时间序列分析LSTM模型用于时间序列预测matlab代码Python我们将采用更多的机器学习和深度学习技术,例如图像处理、深度神经网络(DNN)、卷积神经网络(CNN)等,并结合不同的算法进行更深入的分析。1.数据预处理与
- 7个改变python金融分析神奇库
python茶水实验室
python金融开发语言数据结构beautifulsoupscikit-learnscrapy
理解几个常用的Python金融分析库对于金融数据处理和分析非常重要。以下是几个常用的Python金融分析库的介绍和理解方法:1.Pandas用途:用于数据操作和分析。功能:提供数据结构和数据分析工具,尤其适用于时间序列数据。如何学习:基础知识:熟悉DataFrame和Series,学习如何导入和导出数据。数据操作:掌握数据清洗、数据变换、数据聚合等操作。时间序列分析:了解如何处理和分析时间序列数据
- [笔记] 如何在win上安装fbprophet库(Anaconda-Spyder)
WangMH_CHN
笔记
fbprophet库是Google开发的一个用于时间序列分析的库,该库的运行需要用到C++编译,因此最开始使用python安装的时候会出现很多问题。本文总结了整个安装过程,记录在此。 首先,先阐述初始配置情况:我习惯使用在Anaconda上使用Spyder来写代码,win10系统,系统基础的环境是python3.11。 但是fbprophet只支持py2.7、3.5~3.8,因此需要配置一
- 《python基于时间序列分析的降雨量预测系统》毕业设计项目
君君学姐
python课程设计开发语言
大家好我是君君学姐,混迹在java圈的辛苦码农。今天要和大家聊的是一款《python基于时间序列分析的降雨量预测系统》毕业设计项目。项目源码以及部署相关请联系君君学姐,文末附上联系信息。作者:君君学姐个人简介:精通Java、Python、C#、C、C++等编程语言,同时对微信小程序、Php和Android等技术也能熟练掌握,可为大家提供全面的技术支持与交流。我拥有丰富的成品Java、Python、
- 预测未来,Python中的时间序列分析模型ARIMA
Python学研大本营
python开发语言
时间序列分析:Python中的ARIMA模型,ARIMA模型是一种常用的时间序列预测工具,可以使用statsmodels库在Python中实现。微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩时间序列分析广泛用于预测和预报时间序列中的未来数据点。ARIMA模型被广泛用于时间序列预测,并被认为是最流行的方法之一。在本教程中,我们将学习如何在Python中搭建和评估用于时间序列预测的A
- Apache Hive 聚合函数与 OVER 窗口函数:从基础到高级应用
大鳥
sqlhiveapachehivehadoop
在大数据时代,ApacheHive是处理和分析海量数据的强大工具。Hive提供了丰富的聚合函数和强大的OVER窗口函数,能够帮助我们高效地进行数据分析。本文将综合介绍Hive的聚合函数和OVER窗口函数,结合实际使用场景和代码示例,帮助读者深入理解这些功能,尤其是它们在时间序列分析中的应用。一、Hive聚合函数基础聚合函数是Hive中用于对一组数据进行计算并返回单个值的函数。它们在数据分析中非常常
- 2024 年 MathorCup 数学应用挑战赛——大数据竞赛 赛道 B:电商品类货量预测及品类分仓规划 思路和代码 持续更新中
2025年数学建模美赛
数学建模2024年大数据第五届MathorCupB题
2024年所有数学建模类比赛的个人思路和代码都会发布到专栏内,会结合最新的chatgpt发布思路,开赛一天后恢复原价99,不代写论文,不回复私信.没有群,只需订阅一次目录问题分析与解决思路问题1:货量预测模型问题2:一品一仓分仓规划问题3:一品多仓分仓规划总结这类大数据竞赛的重点在于构建一个全面的预测和优化模型,通过数据处理、时间序列分析以及运筹优化来完成货量预测和分仓规划。下面是一个解决问题的整
- 深度解析:Python与TensorFlow在日平均气温预测中的应用——LSTM神经网络实战
AI_DL_CODE
python神经网络tensorflowLSTM气温预测RNN
文章目录1.引言1.1研究背景与意义1.2研究目标与问题定义2.概念解析2.1Python语言简介2.2TensorFlow框架概述2.3LSTM神经网络原理3.原理详解3.1时间序列分析基础3.1.1时间序列的组成3.1.2时间序列分析方法3.2LSTM在时间序列分析中的应用3.2.1LSTM的优势3.2.2LSTM的结构3.3日平均气温预测的数学模型3.3.1ARIMA模型3.3.2LSTM模
- 《python基于时间序列分析的降雨量预测系统》毕业设计项目
陈辰学长
python课程设计开发语言
大家好,我是陈辰学长,一名在Java圈辛勤劳作的码农。今日要和大家分享的是一款《python基于时间序列分析的降雨量预测系统》毕业设计项目。项目源码以及部署相关事宜,请联系陈辰学长,文末会附上联系信息哦。作者:陈辰学长个人简介:在Java领域已沉浸十余年,对Java、微信小程序、Python、Android等技术颇为精通。若大家在这些领域有任何问题,欢迎一起交流探讨!各类成品Java毕业设计丰富多
- Python数据分析高频面试题及答案
闲人编程
程序员面试python数据分析面试题核心
目录1.基础知识2.数据处理3.数据可视化4.机器学习模型5.进阶问题6.数据清洗与预处理7.数据转换与操作8.时间序列分析9.高级数据分析技术10.数据降维与特征选择11.模型评估与优化12.数据操作与转换13.数据筛选与分析14.数据可视化与报告15.数据统计与分析16.高级数据处理以下是一些Python数据分析的高频核心面试题及其答案,涵盖了基础知识、数据1.基础知识问1:Python中列表
- 数据分析-18-时间序列分析的季节性检验
皮皮冰燃
数据分析数据分析
1什么是时间序列时间序列是一组按时间顺序排列的数据点的集合,通常以固定的时间间隔进行观测。这些数据点可以是按小时、天、月甚至年进行采样的。时间序列在许多领域中都有广泛应用,例如金融、经济学、气象学和工程等。时间序列的分析可以帮助我们理解和预测未来的趋势和模式,以及了解数据的周期性、趋势、季节性等特征。常用的时间序列分析方法包括平滑法、回归分析、ARIMA模型、指数平滑法和机器学习方法等。1.1时间
- 时间序列分析技巧(二):ARIMA模型建模步骤总结
小墨&晓末
时间序列分析算法机器学习人工智能程序人生
CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍:研一|统计学|干货分享 擅长Python、Matlab、R等主流编程软件 累计十余项国家级比赛奖项,参与研究经费10w、40w级横向文章目录1目的2ARIMA模型建模流程图解3ARIMA模型建模实操1目的 该篇为针对时间序列ARIMA模型建模系列技巧:ARIMA模型
- 网络安全最新SARIMA季节项时间序列分析流程+python代码
2401_84301389
程序员python人工智能机器学习
文章目录数据流程流程分割1画图2季节项和周期项的去除3平稳性检验4白噪声检验5模型拟合6模型定阶AIC/BIC准则7检查残差是否通过检验7.1若通过检验7.2若未通过检验8模型的预测9模型的评价画图均方差等总的代码参考数据数据网站:NationalAeronauticsandSpaceAdministrationGoddardInstituteforSpaceStudies主要分析的是北美陆地表面
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文