- 用Python的Chartify库,商业数据可视化效率提升13倍!
忆愿
Python编程的脉动之声pythonopencv人工智能计算机视觉深度学习神经网络机器学习
文章目录为啥要用Chartify?安装那些事儿从零开始画图基础柱状图进阶折线图散点图与气泡图专业数据分析必备技能多维度分析时间序列分析高级可视化技巧自定义主题交互式特性批量图表生成性能优化技巧大数据集处理内存优化实战案例:销售数据分析系统数据可视化这事儿,搞过的都知道有多费劲。用matplotlib画个图要调半天参数,才能让图表看起来稍微顺眼一点;seaborn虽然画出来的图确实好看,但是配置项太
- 【Statsmodels和SciPy介绍与常用方法】
机器学习司猫白
scipystatsmodels统计
Statsmodels库介绍与常用方法Statsmodels是一个强大的Python库,专注于统计建模和数据分析,广泛应用于经济学、金融、生物统计等领域。它提供了丰富的统计模型、假设检验和数据探索工具,适合进行回归分析、时间序列分析等任务。本文将介绍Statsmodels的核心功能,并通过代码示例展示其常用方法。Statsmodels简介Statsmodels建立在NumPy和SciPy的基础上,
- 供应链风险管理:AI如何预测供应链风险
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
供应链风险管理,AI预测,机器学习,深度学习,自然语言处理,时间序列分析,风险评估1.背景介绍在当今全球化经济体系中,供应链风险已成为企业面临的重大挑战。供应链的复杂性和不可预测性使得企业更容易受到各种风险的影响,例如自然灾害、政治动荡、经济波动、疫情爆发等。这些风险可能导致供应中断、成本增加、交付延迟,甚至损害企业声誉。传统供应链风险管理方法主要依赖于经验和专家判断,缺乏数据驱动和预测能力。随着
- 循环神经网络(RNN):序列数据处理的强大工具
LNL13
rnn人工智能深度学习
在人工智能和机器学习的广阔领域中,处理和理解序列数据一直是一个重要且具有挑战性的任务。循环神经网络(RecurrentNeuralNetwork,RNN)作为一类专门设计用于处理序列数据的神经网络,在诸多领域展现出了强大的能力。从自然语言处理中的文本生成、机器翻译,到时间序列分析中的股票价格预测、天气预测等,RNN都发挥着关键作用。本文将深入探讨RNN的工作原理、架构特点、训练方法、常见类型以及其
- Python Day57
别勉.
python机器学习python开发语言
Task:1.序列数据的处理:a.处理非平稳性:n阶差分b.处理季节性:季节性差分c.自回归性无需处理2.模型的选择a.AR§自回归模型:当前值受到过去p个值的影响b.MA(q)移动平均模型:当前值收到短期冲击的影响,且冲击影响随时间衰减c.ARMA(p,q)自回归滑动平均模型:同时存在自回归和冲击影响时间序列分析:ARIMA/SARIMA模型构建流程时间序列分析的核心目标是理解序列的过去行为,并
- MATLAB代码实现了一个完整的ARIMA时间序列分析与预测流程
神经网络697344
算法深度学习MATLABmatlab信息可视化开发语言
%%1.数据准备years=(2010:2024)';data=[11894,12277,12777,13262,13902,14524,15037,15961,16724,...17767,19064,20056,20978,21676,22023]';%创建时间序列对象ts=timeseries(data,years,'Name','65岁以上人口');ts.TimeInfo.Units='y
- PyEcharts教程(010):天猫订单数据可视化项目
文理棵
Python数据分析信息可视化python数据分析
文章目录1、读取数据2、数据处理3、重复值查看4、缺失值查看5、PyEcharts可视化5.1各个省份的订单量5.2时间序列分析5.3每天订单量统计可视化6、数据下载1、读取数据1️⃣读取数据:importpandasaspdfrompyechartsimportoptionsasoptsfrompyecharts.chartsimportMap,Timeline,Bar,Line,Piedata
- 【AI Study】第四天,Pandas(4)- 时间序列处理
co-n00b
AIStudy人工智能pandasai
文章概要本文详细介绍Pandas的时间序列处理功能,包括:时间序列基础时间序列操作时间序列分析实际应用示例时间序列基础时间戳#创建时间戳ts=pd.Timestamp('2023-01-01')ts=pd.Timestamp('2023-01-0112:00:00')#时间戳属性print(ts.year)#年份print(ts.month)#月份print(ts.day)#日期print(ts.
- 【AI Study】第五天,Matplotlib(10)- 实际应用
co-n00b
AIStudy人工智能matplotlibaipython
文章概要本文详细介绍Matplotlib的实际应用,包括:数据分析可视化科学计算可视化交互式应用报告生成数据分析可视化时间序列分析importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfrommatplotlib.datesimportDateFormatter,MonthLocatordefplot_time_series_anal
- 动态图神经网络在社交网络演化分析中的应用
AI大模型应用实战
神经网络网络phpai
动态图神经网络在社交网络演化分析中的应用关键词:动态图神经网络、社交网络演化分析、图深度学习、时间序列分析、网络动力学摘要:本文深入探讨了动态图神经网络在社交网络演化分析中的应用。首先介绍了相关背景知识,包括目的范围、预期读者等。接着详细阐述了核心概念,如动态图神经网络的原理和架构,并通过示意图和流程图进行直观展示。对核心算法原理进行了深入讲解,结合Python代码给出具体操作步骤。同时,介绍了相
- Python 爬虫实战:统计局年鉴数据爬取(含时间序列分析与经济指标可视化)
Python核芯
Python爬虫实战项目python爬虫开发语言
一、项目概述国家统计局年鉴数据是经济分析、学术研究和政策制定的重要依据。本项目旨在通过Python爬虫技术,高效爬取统计局年鉴数据,并结合时间序列分析与数据可视化技术,深入挖掘经济指标的变化趋势和内在规律。二、技术准备(一)环境配置Python环境:建议使用Python3.8+版本。开发工具:推荐使用VSCode或PyCharm。(二)依赖库安装本项目需要以下关键库:aiohttp:用于异步HTT
- 高效时间序列分析的开源利器:QuestDB
臻源
精品开源应用分享开源github时序数据库性能优化
QuestDB:探索数据的深度,加速决策的速度-精选真开源,释放新价值。概览时序数据库(TimeSeriesDatabase,简称TSDB)是一种专门设计和优化的数据库系统,用于高效地存储、管理和查询带有时间戳的数据序列,即时间序列数据。这类数据库的核心特点是处理那些随时间变化的数据,如传感器测量值、服务器性能指标、股票价格、天气数据等,其中每个数据点都关联了一个精确的时间戳。QuestDB是一个
- Python自动化炒股:利用Prophet和ARIMA进行股票价格预测的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
Python自动化炒股:利用Prophet和ARIMA进行股票价格预测的实战案例引言在金融市场中,股票价格预测一直是一个热门话题。随着机器学习和时间序列分析技术的发展,我们有了更多的工具来尝试预测股票价格。在这篇文章中,我们将探讨如何使用Python中的Prophet和ARIMA模型来进行股票价格预测。这两种模型各有优势,Prophet适合处理具有强季节性的时间序列数据,而ARIMA则是一种经典的
- 使用LSTM进行时间序列分析
肥猪猪爸
人工智能#深度学习lstm人工智能rnn时间序列分析算法数据结构深度学习
LSTM(长短期记忆网络,LongShort-TermMemory)是一种特殊的循环神经网络(RNN),专门用于处理时间序列数据。由于其独特的结构设计,LSTM能够有效地捕捉时间序列中的长期依赖关系,这使得它在时间序列分析中表现出色。以下是LSTM如何进行时间序列分析的详细步骤和原理:1.时间序列问题的特点时间序列数据是指按照时间顺序排列的数据点,例如股票价格、天气记录、传感器数据等。这类数据通常
- Python自动化炒股:基于时间序列分析的股票市场波动性预测模型开发与优化的实战案例
云策量化
Python自动化炒股量化投资量化软件python量化交易QMTPTrade量化炒股量化投资deepseek
Python自动化炒股:基于时间序列分析的股票市场波动性预测模型开发与优化的实战案例在金融市场中,股票价格的波动性是投资者非常关注的一个重要指标。高波动性往往意味着更高的风险和潜在的收益。本文将介绍如何使用Python进行自动化炒股,特别是基于时间序列分析的股票市场波动性预测模型的开发与优化。1.理解时间序列分析时间序列分析是一种统计技术,用于分析按时间顺序排列的数据点。在股票市场,时间序列分析可
- 【PostgreSQL数据分析实战:从数据清洗到可视化全流程】附录-C. 常用SQL脚本模板
言析数智
postgresql数据分析常用SQL脚本模板全量备份增量备份表级备份JSON数据处理
点击关注不迷路点击关注不迷路点击关注不迷路文章大纲附录C.常用SQL脚本模板速查表一、数据清洗与预处理模板二、数据聚合与分析模板三、窗口函数应用模板四、性能优化与监控模板五、数据备份与恢复模板六、权限管理与安全模板七、事务与错误处理模板八、时间序列分析模板九、日志分析与诊断模板十、高级功能模板附录使用说明以下是《PostgreSQL数据分析实战:从数据清洗到可视化全流程》附录C的内容框架和核心知识
- 数据分析预备篇---Pandas的Series
new282
数据分析pandas数据挖掘
Pandas优势Pandas优势在于它是构建在NumPy之上的,继承了NumPy高性能的数组计算功能,同时还提供了更多复杂精细的数据处理功能(如缺失值处理、时间序列分析),支持表格型数据(DataFrame)和带标签的一维数据(Series)安装PandasWindows操作系统,在菜单栏搜索cmd,进入命令提示符,输入pipinstallpandasmacOS系统点击顶部菜单栏放大镜图标,输入“
- Python中的时间序列分析与预测技术
程序员Gloria
Python超入门数据分析python开发语言
Python中的时间序列分析与预测技术时间序列分析是数据科学中的重要领域,它涵盖了从数据收集到模型构建和预测的整个过程。Python作为一种强大的编程语言,在时间序列分析和预测方面有着丰富的工具和库。本文将介绍Python中常用的时间序列分析与预测技术,并通过代码实例演示其应用。1.数据准备在进行时间序列分析之前,首先需要准备数据。我们将使用Python中的pandas库来读取和处理时间序列数据。
- 数据仓库分层架构详解:ODS、DWD、DWS、ADS层及其实现工具
lingding_cn
数据仓库odsdwd数据仓库架构dwsods
数据仓库分层架构详解:ODS、DWD、DWS、ADS层及其实现工具1.数据仓库简介数据仓库(DataWarehouse,DW)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。与传统的业务数据库不同,数据仓库主要用于数据分析和决策支持,而非日常事务处理。数据仓库的核心价值在于:整合企业各系统数据,提供统一的数据视图存储历史数据,支持时间序列分析提供强大的分析能力,支持
- 基于Python和PyTorch的实现示例,结合YOLOv8进行人体检测、HRNet进行姿态估计,以及LSTM进行时间序列分析。
人工智能专属驿站
计算机视觉
视频输入:从摄像头或视频文件中读取视频流。人体检测与跟踪:使用目标检测模型(如YOLOv8、EfficientDet)检测视频帧中的人体。使用目标跟踪算法(如DeepSORT)跟踪人体,确保连续帧中的人体ID一致。姿态估计:使用姿态估计模型(如HRNet、OpenPose)提取人体的关键点(如头、肩、肘、膝、踝等)。关键点信息用于分析人体的姿态和运动。时间序列分析:使用时间序列模型(如LSTM、G
- 数据可视化(Matplotlib和pyecharts)
木子杳衫
大数据分析信息可视化matplotlib
一常见图形概念及使用图表类型适用场景核心特点柱状图(bar)比较不同类别数据(如各地区销售额对比)、时间序列分析(离散时间)高度反映数值大小,支持横向/纵向展示,可叠加分组折线图(plot)连续数据趋势比较(适合展示随时间的变化,如股票价格走势、用户增长趋势)、多变量趋势比较通过线段连接数据点,强调连续性变化散点图(scatter)分析变量间相关性(如身高与体重关系),聚类分析初步观察用点分布揭示
- 数据可视化工具:树状图与时间序列分析
火箭统
树状图层次聚类时间序列可视化条形图折线图
树状图与时间序列分析在数据可视化中的应用背景简介在数据分析和信息传递中,数据可视化工具扮演着至关重要的角色。本章探讨了几种常用的可视化工具,如树状图和时间序列分析工具,它们在展示和解释复杂数据集方面的作用。树状图的解读与应用层次聚类的图形表示:树状图(Dendrogram)是一种基于层次聚类分析的图形表示工具,它在分析定性数据时尤其有用。通过关注对象连接的高度,我们可以揭示不同对象之间的相似性或差
- 2023和2024历年美赛数学建模赛题,算法模型分析!
灿灿数模分号
数学建模
文末获取历年优秀论文解析,可交流解答2023年题目分析MCM(MathematicalContestinModeling)问题A:遭受旱灾的植物群落概述:要求建立预测模型,模拟植物群落在干旱和降水充裕条件下随时间的变化。类型:评价及预测类可能采用的模型和算法:时间序列分析:用于预测植物群落数量和种类的变化趋势。生态模型:如Logistic增长模型,描述种群动态。差分方程:模拟不同植物类型随时间的变
- 【Python使用】嘿马python数据分析教程第4篇:特征工程,特征衍生【附代码文档】
python后端
教程总体简介:Excel的使用全渠道业务概述1.Excel的使用(预计4小时)2.全渠道业务分析(预计4小时)第01章Pandas基础第02章DataFrame基本操作第03章数据分析入门第04章选取数据子集第05章布尔索引第06章分组聚合、过滤、转换第09章时间序列分析第10章用Matplotlib、Pandas、Seaborn进行可视化完整笔记资料代码:https://gitee.com/yi
- 预测未来?Python中的时间序列分析模型ARIMA
Python_P叔
python开发语言
时间序列分析:Python中的ARIMA模型,ARIMA模型是一种常用的时间序列预测工具,可以使用statsmodels库在Python中实现。时间序列分析广泛用于预测和预报时间序列中的未来数据点。ARIMA模型被广泛用于时间序列预测,并被认为是最流行的方法之一。在本教程中,我们将学习如何在Python中搭建和评估用于时间序列预测的ARIMA模型。什么是ARIMA模型?ARIMA模型是一种用于分析
- 现代教育:大学学科进阶总览
Yuner2000
教育体系大学学科
《现代教育:大学学科进阶总览》目录第一章自然科学1.1数学科学基础数学数理逻辑:模型论/证明论代数几何:概形理论/模空间微分拓扑:流形分类/微分结构数论前沿:朗兰兹纲领/椭圆曲线加密应用数学计算数学:有限元分析/偏微分方程数值解运筹学:组合优化/随机过程金融数学:衍生品定价/风险价值模型统计学生物统计:生存分析/基因组关联研究经济计量:时间序列分析/面板数据模型空间统计:地理加权回归/克里金插值1
- Python进行时间序列平稳性检验(ADF Test)
幻想世界中的绚丽色彩
python开发语言Python
Python进行时间序列平稳性检验(ADFTest)时间序列分析是一种广泛应用于经济学、金融学和其他领域的统计分析方法。其中,平稳性是时间序列分析的一个重要概念。平稳时间序列的统计特性在时间上是不变的,这意味着它们的均值、方差和自相关结构不会随时间的推移而改变。在进行时间序列分析之前,我们通常需要检验数据是否平稳。本文将介绍如何使用Python进行时间序列平稳性检验,其中涉及到的方法是ADF检验(
- 学会这些, 月薪不止过万吧 !!!
程序员
你准备好了么数据处理与分析NumPy简介:多维数组计算核心库,支持高效数学运算。安装:pipinstallnumpy实战:矩阵运算、科学计算、图像处理。Pandas简介:数据清洗与分析利器,支持DataFrame操作。安装:pipinstallpandas实战:CSV/Excel数据处理、时间序列分析。Polars简介:高性能DataFrame库(替代Pandas),支持多线程。安装:pipins
- 机器学习在气候变化模型中的应用
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
机器学习在气候变化模型中的应用关键词:机器学习,气候变化,时间序列分析,预测模型,数据预处理,案例分析,未来发展趋势摘要本文旨在探讨机器学习在气候变化模型中的应用,包括基本概念、数学基础、时间序列分析、预测模型以及实际应用案例。我们将通过详细的理论讲解和实战案例分析,展示如何利用机器学习技术对气候变化进行预测和分析,以期为气候变化研究提供新的思路和方法。此外,本文还将展望机器学习在气候变化研究中的
- 从代码学习深度学习 - RNN PyTorch版
飞雪白鹿€
深度学习-pytorch版深度学习pytorch
文章目录前言一、数据预处理二、辅助训练工具函数三、绘图工具函数四、模型定义五、模型训练与预测六、实例化模型并训练训练结果可视化总结前言循环神经网络(RNN)是深度学习中处理序列数据的重要模型,尤其在自然语言处理和时间序列分析中有着广泛应用。本篇博客将通过一个基于PyTorch的RNN实现,结合《TheTimeMachine》数据集,带你从零开始理解RNN的构建、训练和预测过程。我们将逐步剖析代码,
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文