pytorch 一些 Loss Function

nn.L1Loss()

loss(x,y) = 1/n ∑ |xi - yi| n是元素的总个数
shape:
input: (N,) 是任何额外的维度
target: (N,*) same as input
output: scalar ,标量

nnMSELoss()

loss(x,y) =1/n ∑(xi-yi)²
shape:
input: (N,*)
target: (N,*)
output: scalar

nn.CrossEntropyLoss()

单目标二分类或者多分类
loss = -log[ exp(x[class])/ (∑ exp( x[j]))]
shape:
input: (N,C) C = number of classes
target : (N)

NN.BCELoss()

单目标二分类交叉熵函数,Binary_Corss_Entropy
loss = -1/n ∑{ t[i]*log(o[i])-(1-t[i]) *log(1-o[i])} i = 0,1
shape:
input: (N,*)
output: (N,*)

你可能感兴趣的:(pytorch,卷积网络)