- 致良知之寄诸用明书
BonSun
众所周知,当今社会,父母和社会、学校对学生的期望往往是唯分数论,包括每个人对成功的理解也往往是功名利禄,忽视了最基本的学问。文中提到,花之千叶者无实,为其华美太发露耳。人只有沉下心来,韬光养晦,才能拥有真正的学问和本领。
- Python【math数学函数】
Alan_Lowe
#Pythonpython
Python【math数学函数】文章目录Python【math数学函数】数论与表示函数1.ceil()和floor()2.comb()3.copysign()4.fabs()5.factorial()6.gcd()7.lcm()幂函数与对数函数1.exp()和math.e和pow()2.log()和log2()和log10()3.sqrt(x)三角函数1.asin、acos()、atan()2.s
- 蓝桥杯第十四届C++C组
bug~bug~
蓝桥杯蓝桥杯c++c语言
目录三国游戏填充翻转【单调队列优化DP】子矩阵【快速幂、欧拉函数】互质数的个数【tire树】异或和之差【质因数分解】公因数匹配子树的大小三国游戏题目描述小蓝正在玩一款游戏。游戏中魏蜀吴三个国家各自拥有一定数量的士兵X,Y,Z(一开始可以认为都为0)。游戏有n个可能会发生的事件,每个事件之间相互独立且最多只会发生一次,当第i个事件发生时会分别让X,Y,Z增加Ai,Bi,Ci。当游戏结束时(所有事件的
- python 实现eulers totient欧拉方程算法
luthane
算法python开发语言
eulerstotient欧拉方程算法介绍欧拉函数(Euler’sTotientFunction),通常表示为(),是一个与正整数相关的函数,它表示小于或等于的正整数中与互质的数的数目。欧拉函数在数论和密码学中有广泛的应用。欧拉函数的性质1.**对于质数,有φ(p)=p−1∗∗φ(p)=p−1^{**}φ(p)=p−1∗∗。2.**如果是质数的次幂,即n=pkn=p^kn=pk,则φ(n)=pk−
- 算法设计与分析学习(6)——数论
罗塞菈桔梨萝柚
算法学习算法线性代数
数论整除基本概念若aaa和bbb为整数,且a≠0a≠0a=0若存在整数qqq使得b=aqb=aqb=aq,那么就说aaa可以整除bbb或是bbb被aaa整除,记作a∣ba|ba∣b。aaa也被称为bbb的约数,bbb也被称为a的倍数。若bbb不能被aaa整除,则记作a∤ba\not{|}ba∣b。整数p≠0,±1p≠0,±1p=0,±1,且除了±1,±p±1,±p±1,±p外没有其他的约数
- 数论——欧几里得算法
NarutoTime
数论算法c++数据结构c语言
1.欧几里得简介 欧几里得(希腊文:Ευκλειδης,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。2.欧几里得算法欧几里得算法用于:求解a和b的最大公约数。最大公约数英文为:Gre
- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- Collatz 猜想和 Python
不连续小姐
PythonDay4:CollatzConjecture原来总有学生问我,微积分有什么用啊,我说如果微积分学好了,也许抽象代数和数论就能学好,那最后就能像AndrewWiles一样上人物年度杂志的封面了.(AndrewWiles证明了Fermat'sLastTheorem,费玛大定理).[captionid="attachment_1466"align="alignnone"width="300"
- 初等数论--整除--带余除法
WeidanJi
初等数论数学密码学信息安全
初等数论--整除--带余除法概念基本性质带余除法博主本人是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。我整理成一个系列:初等数论,方便检索。概念初等数论研究对象是整数集合和自然数集合。初等数论研究对象是整数集合和自然数集合。初等数论研究对象是整数集合和自然数集合。b∣a:若a,b∈Z,b≠0,∃c∈Z,使a=bc,则称b整除a
- 河南萌新2024第四场
Pown_ShanYu
算法数据结构
C岗位分配题目大意:有n个岗位,m位志愿者,每个岗位至少需要a个志愿者,并且可以有志愿者可以空闲下来作预备,给出可能的分配情况总数思路:首先将每个岗位分配好至少需要的志愿者,再将剩下的人进行分配,那就满足球同盒不同模型(允许空盒),可用隔板法进行分配,需要额外开设一个空闲岗位用来预备,那么按照4个人去4个岗位,那么为c73,具体操作可看数论模板中发布的隔板法问题,递归求组合数Solved:intn
- 【读书笔记】吴非《致青年教师》(4)
冬儿菇凉
一、精要摘录(48——106页)1.教育教学不能“唯分数论“,比分数重要的是学生思维品质和解决实际问题的能力。2.一名教师心中有使命感,心中有学生才会很在意学生对他的态度,在意学生的接受度。3.作为教师,你要善于向学生问出有意思的问题。4.教育就是要培养好习惯,教是为了达到不需要教学生,不需要老师教了是教学的成功,也是教师的职业追求。5.教师是学习者,在学习上教师首先要郑重其事,学生才有可能养成敬
- 数学知识——欧拉函数、快速幂、扩展欧几里得算法
up-to-star
acwing算法基础课学习笔记
欧拉函数欧拉函数定义为ϕ(n)=1−n中与n互质的个数\phi(n)=1-n中与n互质的个数ϕ(n)=1−n中与n互质的个数,互质就是最大公约数是1。欧拉函数求解公式:将n分解质因数:n=p1a1+p2a2+...+pkakn=p_1^{a1}+p_2^{a2}+...+p_k^{ak}n=p1a1+p2a2+...+pkak,则ϕ(n)=n∗(1−1p1)∗(1−1p2)∗.....∗(1−1p
- 【快速幂、欧拉函数】蓝桥杯第十四届---互质数的个数
bug~bug~
蓝桥杯蓝桥杯职场和发展
给定a,b,求1≤xusingnamespacestd;typedeflonglongLL;constintmod=998244353;LLquick_pow(LLa,LLb){LLres=1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}returnres;}LLeu(LLn){LLres=n;for(LLi=2;i1)res=res*(n-1)/
- 【欧拉函数+快速幂】第十四届蓝桥杯省赛C++ C组 Java A组/研究生组 Python 研究生组《互质数的个数》(C++)
北洋的霞洛
蓝桥杯历年真题蓝桥杯c++算法模板方法模式
【题目描述】给定a,b,求1≤x#include#includeusingnamespacestd;typedeflonglongLL;constintMOD=998244353;LLqmi(LLa,LLb){LLres=1;while(b){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}returnres;}intmain(){LLa,b;cin>>a>>b;if(
- 【代码随想录算法训练营Day39】62.不同路径;63. 不同路径 II
想做一只潜水的猪
算法
文章目录❇️Day39第九章动态规划part02✴️今日任务❇️62.不同路径自己的思路自己的代码随想录思路随想录代码❇️63.不同路径II自己的思路自己的代码随想录代码❇️Day39第九章动态规划part02✴️今日任务今天开始逐渐有dp的感觉了,题目不多,就两个不同路径,可以好好研究一下62.不同路径63.不同路径II❇️62.不同路径本题大家掌握动态规划的方法就可以。数论方法有点非主流,很难
- 算法D39 | 动态规划2 | 62.不同路径 63. 不同路径 II
memolaner
算法训练营算法动态规划数据结构c++python
今天开始逐渐有dp的感觉了,题目不多,就两个不同路径,可以好好研究一下62.不同路径本题大家掌握动态规划的方法就可以。数论方法有点非主流,很难想到。代码随想录视频讲解:动态规划中如何初始化很重要!|LeetCode:62.不同路径_哔哩哔哩_bilibili这个题看到路径的表示,第一直觉就是一个组合数的问题,学了一下C++计算组合数防止溢出的小技巧。第二个方法再动态规划完成,重点是把二维的动态规划
- 牛客周赛 Round 35(A,B,C,D,E,F,G)
邪神与厨二病
牛客算法暴力c++数论滑动窗口单调队列贪心构造
这场简单,甚至赛时90分钟不到就AK了。比赛链接,队友题解友链刚入住学校监狱,很不适应,最近难受的要死,加上最近几场CF打的都不顺利,san值要爆掉了,只能慢慢补题了。这场C是个滑动窗口,D是贪心,E是有点麻烦的构造,FG是数论。A小红的字符串切割思路:记录一下字符串长度,然后从中间拆开。code:#include#include#includeusingnamespacestd;strings;
- 欧拉函数
wancong3
数学算法
文章目录概念欧拉函数的公式欧拉函数的计算欧拉函数的性质概念欧拉函数φ(n)φ(n)φ(n)描述的是小于等于n的正整数2中与n互质的个数。先回顾一下互质的定义,互质是指两个正整数的最大公约数为1。所以不难得出,1和任何正整数互质;除1外任何正整数和它自己不可能互质;nnn和n+1n+1n+1互质。另外,除φ(1)=1φ(1)=1φ(1)=1外,欧拉函数满足φ(n)≤n−1φ(n)≤n-1φ(n)≤n
- 算法——数论——同余
戏拈秃笔
数据结构与算法(java版)算法
目录同余一、试题算法训练同余方程同余同余使人们能够用等式的形式简洁地描述整除关系同余:若m(正整数),a和b是整数,a%m==b%m,或(a-b)%m==0,记为ab(modm)求解一元线性同余方程等价于求解二元线性丢番图方程一元线性同余方程,解法看下面第一题二元线性丢番图方程逆:的一个解为a模m的逆一、试题算法训练同余方程问题描述求关于x的同余方程ax≡1(modb)的最小正整数解。输入格式输入
- pku acm 题目分类
moxiaomomo
算法数据结构numbers优化calendarcombinations
1.搜索//回溯2.DP(动态规划)3.贪心北大ACM题分类2009-01-2714.图论//Dijkstra、最小生成树、网络流5.数论//解模线性方程6.计算几何//凸壳、同等安置矩形的并的面积与周长sp;7.组合数学//Polya定理8.模拟9.数据结构//并查集、堆sp;10.博弈论1、排序sp;1423,1694,1723,1727,1763,1788,1828,1838,1840,22
- C++STL之Queue容器
芯片烧毁大师
数据结构C++c++开发语言
C++STL之Queue容器1.再谈队列回顾一下之前所学的队列,队列和栈不同,队列是一种先进先出的数据结构,STL的队列内容极其重要,虽然内容较少但是请务必掌握,STL的队列是快速构建搜索算法以及相关的数论图论的状态存储的基础。2.相关头文件头文件:#include3.初始化格式为:**explicit**queue(**const**container_type&ctnr=container_t
- 数字签名算法MD5withRSA
Just_Paranoid
技术流Clipmd5rsasignatrue
数字签名MD5withRSA,:将正文通过MD5数字摘要后,将密文再次通过生成的RSA密钥加密,生成数字签名,将明文与密文以及公钥发送给对方,对方拿到私钥/公钥对数字签名进行解密,然后解密后的,与明文经过MD5加密进行比较,如果一致则通过使用Signature的API来实现MD5withRSARSA原理:RSA算法基于一个十分简单的数论事实,将两个大素数相乘十分容易,但反过来想要对其乘积进行因式分
- 【Crypto | CTF】RSA打法 集合
星盾网安
CTF安全密码学
天命:我发现题题不一样,已知跟求知的需求都不一样题目一:已知pqE,计算T,最后求D已知两个质数pq和公钥E,通过p和q计算出欧拉函数T,最后求私钥D【密码学|CTF】BUUCTFRSA-CSDN博客题目二:已知pqE,存在c,计算T,求出D,最后求m已知两个质数pq和公钥E,通过p和q计算出欧拉函数T,求出私钥,通过私钥解密密文c,得到明文m【Crypto|CTF】BUUCTFrsarsa1-C
- 2301: 不定方程解的个数
jht0105
算法
题目描述输出不定方程解的个数。在数学中,不定方程是数论中的一个重要课题,在各种比赛中也常常出现.对于不定方程,有时我们往往只求非负整数解,现有方程ax+by+c=0,其中x、y为未知量且不超过10000,当给定a、b、c的值以后,可求出n组x、y的非负整数解,n>=0,,其中a,b,c均为[-10000,10000].输入描述一行,三个空格隔开的整数,为a、b、c的值。输出描述一个整数,为合法的解
- python伯努利多项式
微小冷
#sympypython开发语言sympy伯努利数排列组合符号计算
文章目录伯努利数和多项式sympy实现伯努利数是一种在数学、物理和工程中广泛应用的特殊数列,以瑞士数学家雅各布·伯努利(JacobBernoulli)的名字命名,并在许多领域中发挥重要作用。在数学中,它们与斐波那契数列、卡塔兰数、贝尔数等数列有密切联系,可以用于解决循环问题、组合问题和递推关系等数学问题。伯努利数和多项式伯努利(Bernoulli)数是一组在数论和复分析中出现的数,与伯努利多项式有
- 二次剩余问题x的求解及代码实现(python)
JustGo12
数论安全1024程序员节
一、问题引入二次剩余是数论基本概念之一。它是初等数论中非常重要的结果,不仅可用来判断二次同余式是否有解,还有很多用途。C.F.高斯称它为算术中的宝石,他一人先后给出多个证明。[1]研究二次剩余的理论称为二次剩余理论。二次剩余理论在实际上有广泛的应用,包括从噪音工程学到密码学以及大数分解。即关于方x^2≡a(modp)对于这个方程,求出满足条件的x。二、x的求解在上述问题下,根据p值的不同性质,可以
- 【数论】exgcd 扩展欧几里得算法
Texcavator
数论算法
参考:exgcd详解-zzt1208-博客园(cnblogs.com)exgcd(扩展欧几里得算法),用来求形如ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b)(a,ba,ba,b为常数)的方程的一组整数解。(如果不确定等号右边是不是gcd,可以先当做gcd,求出来之后验证,是的话就是解,不是的话就不是解)推导见上面的链接,这篇只放个板子codeintexgcd
- [算法学习] 逆元与欧拉降幂
Waldeinsamkeit41
学习
费马小定理两个条件:p为质数a与p互质逆元如果要求x^-1modp,用快速幂求qmi(x,p-2)就好欧拉函数思路:找到因数i,phi/i*(i-1),除干净,判断最后的n欧拉降幂欧拉定理应用示例m!是一个非常大的数,所以要用欧拉降幂,不是把m!算出来后取模,而是计算的时候取模。
- 2021-07-30
RX-0493
学了一会数论,好难1.乘法逆元:a/b%p,若a/b在进行取模运算时,会出现精度问题,而且模运算对除法不适用,(没有分配律,大概就这意思)而求出乘法逆元后,可以把原式变为a*x%p的形式,且值不变。a*x≡1(modp)中,a,p为已知量,则x为a的乘法逆元。例题:乘法逆元设p=k*i+r,(1usingnamespacestd;constintN=20000530;intn,p,inv[N];i
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方