- Python librosa模块介绍
骚火棍
人生苦短我用Pythonlibrosa
librosa语音信号处理模块参考链接:https://www.cnblogs.com/LXP-Never/p/11561355.html
- 嵌入式人工智能实验方向
周南音频科技教育学院(AI湖湘学派)
AI深度学习理论与实践研究音频算法设计研究开发音频算法人工智能神经网络
加我微信hezkz17进嵌入式人工智能研究开发交流答疑群。1可在stm32,esp32,NXP,arduino,树莓派上部署人工智能模型,图像理解,图像分类。2采用BESSOC部署深度学习语音信号处理算法,降噪算法3根据公式用C语言实现卷积CNN,或者采用开源的嵌入式机器学习,嵌入式深度学习,嵌入式神经网络开源sdk,移植,部署到MCU或者SOC,
- 操作系统复习总结——文件管理
是dream
操作系统操作系统文件管理
博客主页:是dream系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:但愿每次回忆,对生活都不感到负疚。感谢大家点赞收藏⭐指正✍️目录一、文件管理概述1、文件基本概念(1)定义(2)基本调度单位(3)文件结构2、文件控制块与索引节点(1)文件属性(2)文件控制块(FCB)(3)索引结点3、文件的操作(操作系统向上提供哪些功能?)4、文件保护(1)加以控制
- 频谱细化-----CZT算法介绍及MATLAB实现
YHCANDOU
频谱细化matlab算法开发语言
CZT变换采用FFT算法可以很快算出全部N点DFT值,即Z变换X(z)X\left(z\right)X(z)在Z平面单位圆上的全部等间隔取样值。实际中,也许不需要计算整个单位圆上Z变换的取样,如对于窄带信号,只需要对信号所在的一段频带进行分析,这时希望频谱的采样集中在这一频带内,以获得较高的分辨率,而频带以外的部分可不考虑,或者对其他围线上的Z变换取样感兴趣,例如语音信号处理中,需要知道Z变换的极
- MATLAB环境下一种音频降噪优化方法—基于时频正则化重叠群收缩
哥廷根数学学派
信号处理小波分析图像处理语音识别人工智能
语音增强是语音信号处理领域中的一个重大分支,这一分支已经得到国内外学者的广泛研究。当今时代,随着近六十年来的不断发展,己经产生了许多有效的语音增强算法。根据语音增强过程中是否利用语音和噪声的先验信息,语音增强算法一般被归类为两类,一类是无先验信息的语音增强算法,另外一类则是具有先验信息的语音增强算法。在第一类无先验信息语音增强算法中,比较常用的语音增强算法有谱减算法、基于统计模型的算法、基于信号子
- 深度学习环境搭建——利用anaconda+pytorch搭建自己的深度学习环境(以YOLOv5环境搭建为例)2023.9.26最新
是dream
深度学习环境搭建深度学习pytorchYOLO
博客主页:是dream系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:要有最朴素的生活和最遥远的梦想,即使明天天寒地冻,山高水远,路远马亡。感谢大家点赞收藏⭐指正✍️前言相信大家在搭建自己的深度学习环境时总会遇到各种问题,特别是小白。记得第一次配置自己的深度学习环境时,什么anaconda、pytorch,我都不知道这些东西是干嘛的,就知道一个YOLO,
- 音视频开发成长之路与音视频知识总结
徐福记456
音视频开发音视频开发基础音视频进阶成长音视频工作方向音视频开源库流媒体协议与音视频书籍
音视频涉及语音信号处理、数字图像处理、信息论、封装格式、编解码、流媒体协议、网络传输、渲染、算法等。在现实生活中,音视频扮演着越来越重要的角色,比如视频会议、直播、短视频、播放器、语音聊天等。因此,从事音视频是一件比较有意义的事情,机遇与挑战并存。本文将从几个维度进行介绍:音视频开发基础、音视频进阶成长、音视频工作方向、音视频开源库、流媒体协议与书籍。目录一、音视频开发基础1、音频基础2、通用基础
- 音频筑基:巴克谱和梅尔谱辨析
来知晓
语音处理音视频
音频筑基:巴克谱和梅尔谱辨析是什么深入了解相关参考在音频信号处理中,巴克谱和梅尔谱是我们经常遇到的概念,也是语音处理中常用到的频域特征,这里谈谈自己对它们的理解。是什么巴克谱又称BarkSpectrum,梅尔谱又称MelSpectrum,其中异同梳理如下:相同点:Bark谱和Mel谱都是将线性频谱映射到非线性谱上的表征,根据不同频带的感知能力来划分,但它们的核心思想不同。这两种谱都是语音信号处理中
- 基于sy3130光感入耳检测功能成功实现
周南音频科技教育学院(AI湖湘学派)
音频算法设计研究开发算法
基于sy3130光感入耳检测功能成功实现是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17,本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料,1芯片介绍2电路实现3寄存器列表
- 低信噪比环境下的语音端点检测
jUicE_g2R
经验模态分解EMD语音识别语言信号处理低信噪比matlab
端点检测技术是语音信号处理的关键技术之一为提高低信噪比环境下端点检测的准确率和稳健性,提出了一种非平稳噪声抑制和调制域谱减结合功率归一化倒谱距离的端点检测算法1端点检测1-1定义定义:在存在背景噪声的情况下检测出语音的起始点和结束点(这里的重点是噪声环境下语音信号的处理)1-2应用需求应用于语音信号处理:语音增强、语音识别、编码和传输需求是:人们希望在远场或者嘈杂的环境中也能用语音控制智能设备,因
- 【Matlab语音加密】语音信号加密解密(带面板)【含GUI源码 181期】
Matlab佛怒唐莲
Matlab完整代码Matlab语音处理matlab语音识别开发语言
一、代码运行视频(哔哩哔哩)【Matlab语音加密】语音信号加密解密(带面板)【含GUI源码181期】二、matlab版本及参考文献1matlab版本2014a2参考文献[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.[3]李波,张晓力,石旭.基于Matlab的语音信号加密处理[J].信息
- 【Matlab语音处理】汉宁窗FIR陷波滤波器语音信号加噪去噪【含GUI源码 1711期】
Matlab佛怒唐莲
Matlab完整代码Matlab语音处理matlab语音识别开发语言
一、代码运行视频(哔哩哔哩)【Matlab语音处理】汉宁窗FIR陷波滤波器语音信号加噪去噪【含GUI源码1711期】二、matlab版本及参考文献1matlab版本2014a2参考文献[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.[3]尹学爱,马国利,冯伟伟.基于MATLAB的声音信号频
- 语音信号处理共振峰
H_uer
语音信号处理基础
窄带语谱图和宽带语谱图首先,什么是语谱图。最通常的,就是语音短时傅里叶变换的幅度画出的2D图。之所以是通常的,是因为可以不是傅里叶变换。“窄带”,顾名思义,带宽小,则时宽大,则短时窗长,窄带语谱图就是长窗条件下画出的语谱图。“宽带”,正好相反。至于“横竖条纹”,窄带语谱图的带宽窄,那么在频率上就“分得开”,即能将语音各次谐波“看得很清楚”,即表现为“横线”。“横”就体现出了频率分辨率高。分辨率可以
- 语音信号处理-基本概念(二):音频通道数、采样频率、采样位数、采样个数(样本数)、一帧音频的大小、每秒播放的音频字节大小、一帧的播放时长、音频重采样
u013250861
Audio音视频语音识别人工智能
对于下面data和linesize的解释(参考下面3.4中的av_samples_alloc_array_and_samples函数说明):data是通道的意思,例如双通道,data[0]代表左声道,data[1]代表右声道。linesize为采样个数的最大大小字节空间。例如aac,64位,双通道,则对于交错模式最大为:linesize=2x1024x8=16384。此时也是一个音频帧的大小。对于
- 用Matlab进行语音信号处理
后端架构小白
matlab信号处理语音识别
用Matlab进行语音信号处理语音信号处理是数字信号处理中的一个重要分支,主要涉及语音信号的采集、压缩、去噪、降噪等处理。Matlab是一个强大的数学计算工具,也是语音信号处理中常用的工具之一。本文将介绍如何使用Matlab对语音信号进行采集、去噪和压缩处理。语音信号采集语音信号采集需要使用麦克风或其他音频输入设备。在Matlab中,可以使用audiorecorder函数进行音频采集。下面的代码演
- 语音信号处理——噪声抑制
DEDSEC_Roger
信号处理音频
简介噪声抑制技术用于消除背景噪声,改善语音信号的信噪比和可懂度,让人和机器听的更清楚常见的噪声种类:人声噪声、街道噪声、汽车噪声噪声抑制方法的分类:按照输入通道数分:单通道降噪、多通道降噪按照噪声统计特性分:平稳噪声抑制、非平稳噪声抑制按照降噪方法分:被动降噪、主动降噪下面介绍的方法用于单通道的、被动的、平稳噪声抑制MinimaControlledRecursiveAveraging(MCRA)传
- 语音信号处理:librosa
智慧医疗探索者
AI数字人技术音视频处理信号处理语音识别librosa
1librosa介绍Librosa是一个用于音频和音乐分析的Python库,专为音乐信息检索(MusicInformationRetrieval,MIR)社区设计。自从2015年首次发布以来,Librosa已成为音频分析和处理领域中最受欢迎的工具之一。它提供了一套清晰、高效的函数来处理音频信号,并提取音乐和音频中的信息。Librosa在音乐和音频分析方面提供了强大而灵活的工具,适用于从基础研究到实
- 如何理解短时傅里叶变换(Short Time Fourier Transform, STFT)
林深迷了鹿
语音信号处理语音识别机器学习人工智能
因为最近一直在学习语音信号的处理,看了HaythamFayek的一篇博客后关于什么是傅里叶变换感到很迷惑,所以就专门写下一篇文章,整理一下我从网页上搜集的内容。短时傅里叶变换(ShortTimeFourierTransform,STFT)是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类,其指定了任意信号随时间和频率变化的复数幅度.实际上,计算短时傅里叶变换的过程是把一个较长
- HMM(Hidden Markov Model)详解——语音信号处理学习(三)(选修一)
LotusCL
声音信号处理学习信号处理学习语音识别人工智能
参考文献:SpeechRecognition(Option)-HMM哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记HMM-6-知乎(zhihu.com)隐马尔可夫(HMM)的解码问题+维特比算法-知乎(zhihu.com)本次省略所有引用论文目录一、介绍二、建模单位StatesState由来转移概率与发射概率三、Alignment四、深度学习下的HMM方法一:Tandem方法
- RNN-T Training,RNN-T模型训练详解——语音信号处理学习(三)(选修三)
LotusCL
声音信号处理学习rnn信号处理学习人工智能语音识别
参考文献:SpeechRecognition(option)-RNN-TTraining哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记AlignmentTrain-8-知乎(zhihu.com)本次省略所有引用论文目录一、如何将Alignment概率加和对齐方式概率如何计算概率加和计算原理概率加和计算方式二、RNN-T的模型训练模型训练思路偏微分计算-1-展开变形偏微分计算-
- Alignment of HMM, CTC and RNN-T,对齐方式详解——语音信号处理学习(三)(选修二)
LotusCL
声音信号处理学习rnn信号处理学习人工智能语音识别
参考文献:SpeechRecognition(option)-AlignmentofHMM,CTCandRNN-T哔哩哔哩bilibili2020年3月新番李宏毅人类语言处理独家笔记Alignment-7-知乎(zhihu.com)本次省略所有引用论文目录一、E2E模型和CTC、RNN-T的区别E2E模型的思路CTC、RNN-T模型的思路二、待解决的问题三、对齐方式介绍四、穷举方式穷举HMM穷举C
- 数字图像处理(1):灰度直方图、直方图均衡化处理(入门必看)
是dream
数字图像处理图像处理
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:闲看花开,静待花落,冷暖自知,干净如始。感谢大家点赞收藏⭐指正✍️前言:本文详细介绍了如何使用python对图像进行基本的操作,包括对图像的读取、显示、修改和保存,通过Matplotlib对图像进行绘制、显示和保存,最后详细讲解了如何绘制直方图,并对直方图进行均衡化处理。欢迎大家参考和学
- 快速调用百度AI开放平台的API,以OCR通用文字识别为例(封装函数进行连续调用)
是dream
项目开发百度人工智能百度云python
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:眼里有不朽的光芒心里有永恒的希望。感谢大家点赞收藏⭐指正✍️前言百度开放平台允许开发者访问和利用百度的各种服务和功能,包括语音识别、人脸识别、文字识别、自然语言处理等等。这些API能够满足我们绝大部分需求,来供我们学习和使用。本文就OCR文字识别为例,详细介绍新手小白如何调用百度开放平台
- NLP自然语言处理——关键词提取之 TF-IDF 算法(五分钟带你深刻领悟TF-IDF算法的精髓)
是dream
自然语言处理tf-idf人工智能
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:要有最朴素的生活和最遥远的梦想,即使明天天寒地冻,山高水远,路远马亡。感谢大家点赞收藏⭐指证✍️前言关键词提取是将文本中的关键信息、核心概念或重要主题抽取出来的过程。这些关键词可以帮助人们快速理解文本的主题,构建文本摘要,提高搜索引擎的效率,甚至用于文本分类和信息检索等应用领域。因此,关
- NLP自然语言处理——关键词提取之 TextRank 算法(五分钟带你深刻领悟TextRank算法的精髓)保姆级教程
是dream
自然语言处理人工智能nlp
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:你要做冲出的黑马而不是坠落的星星。感谢大家点赞收藏⭐指正✍️前言关键词提取是将文本中的关键信息、核心概念或重要主题抽取出来的过程。这些关键词可以帮助人们快速理解文本的主题,构建文本摘要,提高搜索引擎的效率,甚至用于文本分类和信息检索等应用领域。因此,关键词提取在文本分析和自然语言处理中具
- 操作系统之经典同步问题(司机售票员、文件打印、多个生产者消费者、放水果吃水果、读者优先、写者优先、哲学家死锁问题)
是dream
操作系统算法
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:闲看花开,静待花落,冷暖自知,干净如始。感谢大家点赞收藏⭐指正✍️目录一、司机与售票员进程同步问题二、PA、PB、PC合作解决文件打印问题三、多个生产者和多个消费者问题四、放水果吃水果问题五、读者写者问题六、哲学家吃饭问题一、司机与售票员进程同步问题问题描述:在公共汽车上,司机和售票员的
- 如何快速搭建一个大模型?简单的UI实现
是dream
项目开发星火大模型对话框UI设计
博客主页:真的睡不醒系列专栏:深度学习环境搭建、环境配置问题解决、自然语言处理、语音信号处理、项目开发每日语录:相信自己,一路风景一路歌,人生之美,正在于此。感谢大家点赞收藏⭐指正✍️前言:本文章纯属是自己无聊,调用了星火认知大模型的接口,并封装成一个脚本。但测试感觉星火认知大模型也不算太智能,但奈何人家提供了免费的token,当然,也可以根据自己的需要,去调用国内的一些大模型。目录一、申请免费的
- A2B master配置32通道传输数据超带宽了,如何解决?
周南音频科技教育学院(AI湖湘学派)
车载DSP音频系统研究开发网络服务器运维
是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17,本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料,A2Bmaster配置32通道,超带宽了,如何解决?如果A2BMaster配置了32个通道,并且超过了带宽限制,你可以尝试以下几种解决方案:减少通道数量:将通道数量从32个减少到适当的数量,以确保不超过系统的带宽限制。
- 基于DSP/SOC音乐灯效系统设计方法
周南音频科技教育学院(AI湖湘学派)
音频算法设计研究开发信号处理音频人工智能算法
音乐灯效系统设计方法是否需要申请加入数字音频系统研究开发交流答疑群(课题组)?可加我微信hezkz17,本群提供音频技术答疑服务,+群赠送语音信号处理降噪算法,蓝牙耳机音频,DSP音频项目核心开发资料,三种方法:(1)MIC采集音乐信号变化,(2)直接获取SPK模拟音频信号处理
- 基于低通滤波器的语音信号加噪与去噪(附带Matlab源码)
代码创造之旅
matlab语音识别人工智能Matlab
基于低通滤波器的语音信号加噪与去噪(附带Matlab源码)在语音信号处理中,噪声是一个常见的问题,它会降低语音信号的质量和可理解性。为了提高语音信号的清晰度和减少噪声的影响,可以使用低通滤波器进行信号的加噪与去噪处理。本文将介绍基于低通滤波器的语音信号加噪与去噪的原理,并提供相应的Matlab源码。加噪处理在语音信号加噪处理中,我们可以使用低通滤波器来滤除高频噪声成分,从而提高信号的质量。以下是基
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数