time33,bobhash,SpookyHash算法记录

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

apache版time33
unsigned long time33(char const  *str, int *len) 
{ 
    unsigned long hash = 0;

    const char *p=str; 
    if (*len<=0) { 
        for(p = str; *p; p++) { 
            hash = hash * 33 + *p; 
        } 
        *len = p - str; 
    } 
    else { 
        int i = *len; 
        for (p = str;i; i--, p++) { 
            hash = hash * 33 + *p; 
        } 
    } 
    return hash; 
}



简单版time33
uint32_t time33(char const *str, int len) 
    { 
        unsigned long  hash = 0; 
        for (int i = 0; i < len; i++) { 
            hash = hash *33 + (unsigned long) str[i]; 
        } 
        return hash; 
    }

nginx使用的是time31,Tokyo Cabinet使用time37,Java里使用的是Time32

Bob在他的文章说,小写英文词汇适合33, 大小写混合使用65。time33比较适合的是英文词汇的hash.

Bobhash算法

#include      /* defines uint32_t etc */ 
#include   /* attempt to define endianness */ 
#ifdef linux 
# include     /* attempt to define endianness */ 
#endif

/* 
* My best guess at if you are big-endian or little-endian.  This may 
* need adjustment. 
*/ 
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ 
     __BYTE_ORDER == __LITTLE_ENDIAN) || \ 
    (defined(i386) || defined(__i386__) || defined(__i486__) || \ 
     defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) 
# define HASH_LITTLE_ENDIAN 1 
# define HASH_BIG_ENDIAN 0 
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ 
       __BYTE_ORDER == __BIG_ENDIAN) || \ 
      (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) 
# define HASH_LITTLE_ENDIAN 0 
# define HASH_BIG_ENDIAN 1 
#else 
# define HASH_LITTLE_ENDIAN 0 
# define HASH_BIG_ENDIAN 0 
#endif

 

#define hashsize(n) ((uint32_t)1<<(n)) 
#define hashmask(n) (hashsize(n)-1) 
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))


#define mix(a,b,c) \ 
{ \ 
  a -= c;  a ^= rot(c, 4);  c += b; \ 
  b -= a;  b ^= rot(a, 6);  a += c; \ 
  c -= b;  c ^= rot(b, 8);  b += a; \ 
  a -= c;  a ^= rot(c,16);  c += b; \ 
  b -= a;  b ^= rot(a,19);  a += c; \ 
  c -= b;  c ^= rot(b, 4);  b += a; \ 
}

#define final(a,b,c) \ 
{ \ 
  c ^= b; c -= rot(b,14); \ 
  a ^= c; a -= rot(c,11); \ 
  b ^= a; b -= rot(a,25); \ 
  c ^= b; c -= rot(b,16); \ 
  a ^= c; a -= rot(c,4);  \ 
  b ^= a; b -= rot(a,14); \ 
  c ^= b; c -= rot(b,24); \ 
}


uint32_t bob_hash( const void *key, size_t length, uint32_t initval) 
{ 
  uint32_t a,b,c;                                          /* internal state */ 
  union { const void *ptr; size_t i; } u;     /* needed for Mac Powerbook G4 */

  /* Set up the internal state */ 
  a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;

  u.ptr = key; 
  if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { 
    const uint32_t *k = (const uint32_t *)key;         /* read 32-bit chunks */ 
    const uint8_t  *k8;

    /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ 
    while (length > 12) 
    { 
      a += k[0]; 
      b += k[1]; 
      c += k[2]; 
      mix(a,b,c); 
      length -= 12; 
      k += 3; 
    }

    /*----------------------------- handle the last (probably partial) block */ 
    /* 
     * "k[2]&0xffffff" actually reads beyond the end of the string, but 
     * then masks off the part it's not allowed to read.  Because the 
     * string is aligned, the masked-off tail is in the same word as the 
     * rest of the string.  Every machine with memory protection I've seen 
     * does it on word boundaries, so is OK with this.  But VALGRIND will 
     * still catch it and complain.  The masking trick does make the hash 
     * noticably faster for short strings (like English words). 
     */ 
#ifndef VALGRIND

    switch(length) 
    { 
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; 
    case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; 
    case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; 
    case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; 
    case 8 : b+=k[1]; a+=k[0]; break; 
    case 7 : b+=k[1]&0xffffff; a+=k[0]; break; 
    case 6 : b+=k[1]&0xffff; a+=k[0]; break; 
    case 5 : b+=k[1]&0xff; a+=k[0]; break; 
    case 4 : a+=k[0]; break; 
    case 3 : a+=k[0]&0xffffff; break; 
    case 2 : a+=k[0]&0xffff; break; 
    case 1 : a+=k[0]&0xff; break; 
    case 0 : return c;              /* zero length strings require no mixing */ 
    }

#else /* make valgrind happy */

    k8 = (const uint8_t *)k; 
    switch(length) 
    { 
    case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; 
    case 11: c+=((uint32_t)k8[10])<<16;  /* fall through */ 
    case 10: c+=((uint32_t)k8[9])<<8;    /* fall through */ 
    case 9 : c+=k8[8];                   /* fall through */ 
    case 8 : b+=k[1]; a+=k[0]; break; 
    case 7 : b+=((uint32_t)k8[6])<<16;   /* fall through */ 
    case 6 : b+=((uint32_t)k8[5])<<8;    /* fall through */ 
    case 5 : b+=k8[4];                   /* fall through */ 
    case 4 : a+=k[0]; break; 
    case 3 : a+=((uint32_t)k8[2])<<16;   /* fall through */ 
    case 2 : a+=((uint32_t)k8[1])<<8;    /* fall through */ 
    case 1 : a+=k8[0]; break; 
    case 0 : return c; 
    }

#endif /* !valgrind */

  } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { 
    const uint16_t *k = (const uint16_t *)key;         /* read 16-bit chunks */ 
    const uint8_t  *k8;

    /*--------------- all but last block: aligned reads and different mixing */ 
    while (length > 12) 
    { 
      a += k[0] + (((uint32_t)k[1])<<16); 
      b += k[2] + (((uint32_t)k[3])<<16); 
      c += k[4] + (((uint32_t)k[5])<<16); 
      mix(a,b,c); 
      length -= 12; 
      k += 6; 
    }

    /*----------------------------- handle the last (probably partial) block */ 
    k8 = (const uint8_t *)k; 
    switch(length) 
    { 
    case 12: c+=k[4]+(((uint32_t)k[5])<<16); 
             b+=k[2]+(((uint32_t)k[3])<<16); 
             a+=k[0]+(((uint32_t)k[1])<<16); 
             break; 
    case 11: c+=((uint32_t)k8[10])<<16;     /* fall through */ 
    case 10: c+=k[4]; 
             b+=k[2]+(((uint32_t)k[3])<<16); 
             a+=k[0]+(((uint32_t)k[1])<<16); 
             break; 
    case 9 : c+=k8[8];                      /* fall through */ 
    case 8 : b+=k[2]+(((uint32_t)k[3])<<16); 
             a+=k[0]+(((uint32_t)k[1])<<16); 
             break; 
    case 7 : b+=((uint32_t)k8[6])<<16;      /* fall through */ 
    case 6 : b+=k[2]; 
             a+=k[0]+(((uint32_t)k[1])<<16); 
             break; 
    case 5 : b+=k8[4];                      /* fall through */ 
    case 4 : a+=k[0]+(((uint32_t)k[1])<<16); 
             break; 
    case 3 : a+=((uint32_t)k8[2])<<16;      /* fall through */ 
    case 2 : a+=k[0]; 
             break; 
    case 1 : a+=k8[0]; 
             break; 
    case 0 : return c;                     /* zero length requires no mixing */ 
    }

  } else {                        /* need to read the key one byte at a time */ 
    const uint8_t *k = (const uint8_t *)key;

    /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ 
    while (length > 12) 
    { 
      a += k[0]; 
      a += ((uint32_t)k[1])<<8; 
      a += ((uint32_t)k[2])<<16; 
      a += ((uint32_t)k[3])<<24; 
      b += k[4]; 
      b += ((uint32_t)k[5])<<8; 
      b += ((uint32_t)k[6])<<16; 
      b += ((uint32_t)k[7])<<24; 
      c += k[8]; 
      c += ((uint32_t)k[9])<<8; 
      c += ((uint32_t)k[10])<<16; 
      c += ((uint32_t)k[11])<<24; 
      mix(a,b,c); 
      length -= 12; 
      k += 12; 
    }

    /*-------------------------------- last block: affect all 32 bits of (c) */ 
    switch(length)                   /* all the case statements fall through */ 
    { 
    case 12: c+=((uint32_t)k[11])<<24; 
    case 11: c+=((uint32_t)k[10])<<16; 
    case 10: c+=((uint32_t)k[9])<<8; 
    case 9 : c+=k[8]; 
    case 8 : b+=((uint32_t)k[7])<<24; 
    case 7 : b+=((uint32_t)k[6])<<16; 
    case 6 : b+=((uint32_t)k[5])<<8; 
    case 5 : b+=k[4]; 
    case 4 : a+=((uint32_t)k[3])<<24; 
    case 3 : a+=((uint32_t)k[2])<<16; 
    case 2 : a+=((uint32_t)k[1])<<8; 
    case 1 : a+=k[0]; 
             break; 
    case 0 : return c; 
    } 
  }

  final(a,b,c); 
  return c; 
}




bob is about 2 cycles/byte, works well on 32-bit platforms, and can produce a 32 or 64 bit hash. SpookyHash (2011) is specific to 64-bit platforms, is about 1/3 cycle per byte, and produces a 32, 64, or 128 bit hash.



转载于:https://my.oschina.net/u/2007546/blog/425677

你可能感兴趣的:(time33,bobhash,SpookyHash算法记录)