今天同事反映一个问题让帮忙看一下:多进程共用一个变量,在一个进程中修改后,在另外的进程中并没有产生修改。
最初以为是没添加global声明导致修改未生效,但实际操作发现global方式在多进程中也只能读不能写。错误示例代码如下:
import multiprocessing
# 声明一个全局变量
share_var = ["start flag"]
def sub_process(process_name):
# 企图像单个进程那样通过global声明使用全局变量
global share_var
share_var.append(process_name)
# 但是很可惜,在多进程中这样引用只能读,修改其他进程不会同步改变
for item in share_var:
print(f"{process_name}-{item}")
pass
def main_process():
process_list = []
# 创建进程1
process_name = "process 1"
tmp_process = multiprocessing.Process(target=sub_process,args=(process_name,))
process_list.append(tmp_process)
# 创建进程2
process_name = "process 2"
tmp_process = multiprocessing.Process(target=sub_process, args=(process_name,))
process_list.append(tmp_process)
# 启动所有进程
for process in process_list:
process.start()
for process in process_list:
process.join()
if __name__ == "__main__":
main_process()
执行结果如下,可以看到进程1中的修改未表现在进程2中(不过要注意,和多线程一样,如果运算量再大一点进程1并不一定比进程2先执行):
import multiprocessing
# 不能将共享变量和共享锁定义成全局变量然后通过global引用那样会报错,只能传过来
def sub_process(process_name,share_var,share_lock):
# 获取锁
share_lock.acquire()
share_var.append(process_name)
# 释放锁
share_lock.release()
for item in share_var:
print(f"{process_name}-{item}")
pass
def main_process():
# 单个值声明方式。typecode是进制类型,value是初始值
# share_var = multiprocessing.Manager().Value(typecode, value)
# 数组声明方式。typecode是数组变量中的变量类型,sequence是数组初始值
# share_var = multiprocessing.Manager().Array(typecode, sequence)
# 字典声明方式
# share_var = multiprocessing.Manager().dict()
# 列表声明方式
share_var = multiprocessing.Manager().list()
share_var.append("start flag")
# 声明一个共享锁
share_lock = multiprocessing.Manager().Lock()
process_list = []
process_name = "process 1"
tmp_process = multiprocessing.Process(target=sub_process,args=(process_name,share_var,share_lock))
process_list.append(tmp_process)
process_name = "process 2"
tmp_process = multiprocessing.Process(target=sub_process, args=(process_name,share_var,share_lock))
process_list.append(tmp_process)
for process in process_list:
process.start()
for process in process_list:
process.join()
if __name__ == "__main__":
main_process()
执行结果如下,可以看到进程1中的修改已表现在进程2中(不过要注意,和多线程一样,如果运算量再大一点进程1并不一定比进程2先执行):
typecode如果是数值或单个字符,可为以下类型(注意有引号):
Type Code | C Type | Python Type |
'c' | char | character |
'b' | signed char | int |
'B' | unsigned char | int |
'u' | Py_UNICODE | unicode character |
'h' | signed short | int |
'H' | unsigned short | int |
'i' | signed int | int |
'I' | unsigned int | int |
'l' | signed long | int |
'L' | unsigned long | int |
'f' | float | float |
'd' | double | flo |
如果是字符串类型,typecode可为以下第一列形式(注意无引号):
ctypes type | C type | Python type |
c_bool |
_Bool | bool (1) |
char | char | 1-character string |
c_wchar | wchar_t | 1-character unicode string |
c_byte | char | int/long |
c_ubyte | unsigned char | int/long |
c_short | short | int/long |
c_ushort | unsigned short | int/long |
c_int | int | int/long |
c_uint | unsigned in | int/long |
c_long | long | int/long |
c_ulong | unsigned long | int/long |
c_longlong | __int64 or long long | int/long |
c_ulonglong | unsigned __int64 or unsigned long long | int/long |
c_float | float | float |
c_double | double | float |
c_longdouble | long double | float |
c_char_p | char * (NUL terminated) | string or None |
c_wchar_p |
wchar_t * (NUL terminated) | unicode or None |
c_void_p | void * | int/long or None |
同事还想共享一个文件对象,然后问上边的方法是不是只能共享字典、列表,没法共享对象。
回头一看,Value和Array中typecode要求是c语言中存在的类型,其他只有dict()和list()方法没有其他方法,所以似乎上边的方法共享实例化对象是不行的。
import multiprocessing
import threading
# 实例化一个全局文件对象
file_obj = open("1.txt","a")
share_lock = threading.Lock()
def sub_process(process_name):
global file_obj,share_lock
share_lock.acquire()
file_obj.writelines(f"{process_name}")
share_lock.release()
pass
def main_process():
process_list = []
# 创建进程1
process_name = "process 1"
tmp_process = multiprocessing.Process(target=sub_process,args=(process_name,))
process_list.append(tmp_process)
# 创建进程2
process_name = "process 2"
tmp_process = multiprocessing.Process(target=sub_process, args=(process_name,))
process_list.append(tmp_process)
# 启动所有进程
for process in process_list:
process.start()
for process in process_list:
process.join()
if __name__ == "__main__":
main_process()
global方式不能修改变量(如要修改其成员变量),在大多时候也是可以了,但总让人觉得不是一种完美的实现方法。有没有可以修改的实现方法呢,答案是有的,可以使用BaseManager。示例代码如下。
import multiprocessing
from multiprocessing.managers import BaseManager
import threading
# 锁可以通过global也可以在Process中传无所谓
share_lock = threading.Lock()
# 定义一个要共享实例化对象的类
class Test():
def __init__(self):
self.test_list = ["start flag"]
def test_function(self,arg):
self.test_list.append(arg)
def print_test_list(self):
for item in self.test_list:
print(f"{item}")
def sub_process(process_name,obj):
global share_lock
share_lock.acquire()
obj.test_function(f"{process_name}")
share_lock.release()
obj.print_test_list()
pass
def main_process():
# 如果是想注册open方法这样操作
# manager = BaseManager()
# # 一定要在start前注册,不然就注册无效
# manager.register('open', open)
# manager.start()
# obj = manager.open("1.txt","a")
# 为了更加直接我们直接以一个Test类的实例化对象来演示
manager = BaseManager()
# 一定要在start前注册,不然就注册无效
manager.register('Test', Test)
manager.start()
obj = manager.Test()
process_list = []
# 创建进程1
process_name = "process 1"
tmp_process = multiprocessing.Process(target=sub_process,args=(process_name,obj))
process_list.append(tmp_process)
# 创建进程2
process_name = "process 2"
tmp_process = multiprocessing.Process(target=sub_process, args=(process_name,obj))
process_list.append(tmp_process)
# 启动所有进程
for process in process_list:
process.start()
for process in process_list:
process.join()
if __name__ == "__main__":
main_process()
执行结果如下,可以看到进程1中的修改已表现在进程2中(不过要注意,和多线程一样,如果运算量再大一点进程1并不一定比进程2先执行):