- 深度学习基础知识
namelijink
深度学习人工智能
cuda简介:CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA开发的一种并行计算平台和应用程序编程接口(API)。它允许开发人员利用NVIDIA的GPU(图形处理器)来加速各种计算任务,包括科学计算、机器学习、深度学习、数据分析等。NVIDIA是一个全球领先的计算技术公司,专注于设计和制造高性能计算设备。除了生产强大的GPU,NVIDIA还提供与其GPU
- 基于matlab的深度学习案例及基础知识专栏前言
逼子歌
matlab深度学习信号处理神经网络矩阵运算CNN
专栏简介内容涵盖深度学习基础知识、深度学习典型案例、深度学习工程文件、信号处理等相关内容,博客由基于matlab的深度学习案例、matlab基础知识、matlab图像基础知识和matlab信号处理基础知识四部分组成。一、基于matlab的深度学习案例1.1、matlab:基于模板匹配的车牌识别_阐述基于模板匹配的车牌识别的字符识别-CSDN博客1.2、基于卷积神经网络(CNN)的车牌自动识别系统(
- 深度学习入门资料整理
AI视觉网奇
应该看的算法深度学习基础深度学习入门
深度学习基础总结,无一句废话(附完整思维导图)深度学习如何入门?-知乎深度学习入门基础讲义_shuzfan的博客-CSDN博客_深度学习入门神经网络15分钟入门!足够通俗易懂了吧-知乎深度学习基础知识点梳理-知乎
- 深度学习知识学习笔记
wyn20001128
图像处理深度学习算法
一相关的深度学习基础知识(1)线性回归 设房屋的⾯积为x1x_1x1,房龄为x2x_2x2,售出价格为yyy。我们需要建⽴基于输⼊x1x_1x1和x2x_2x2来计算输出的表达式,yyy也就是模型(model)。顾名思义,线性回归假设输出与各个输⼊之间是线性关系:y=w1x1+w2x2+by=w_1x_1+w_2x_2+by=w1x1+w2x2+b 在模型训练中,我们需要衡量价格预测值与真实值
- 深度学习基础知识
湘溶溶
深度学习分割深度学习人工智能
卷积神经网络——图像卷积特征提取卷积核(算子)用来做图像处理时的矩阵,与原图像做运算的参数。卷积层基本参数(卷积核大小,步长【pytorch默认为1】,padding边缘填充)输出尺寸=(输入尺寸-卷积核尺寸+2*padding)/stride+1卷积神经网络的基本结构层输入层:批次通道图像大小卷积层激活函数:加入非线性因素,提高神经网络对模型的表达能力,解决线性模型所不能解决的问题,CNN较为常
- 深度学习基础知识整理
Do1phln
ML深度学习人工智能
自动编码器Auto-encoders是一种人工神经网络,用于学习未标记数据的有效编码。它由两个部分组成:编码器和解码器。编码器将输入数据转换为一种更紧凑的表示形式,而解码器则将该表示形式转换回原始数据。这种方法可以用于降维,去噪,特征提取和生成模型。自编码器的训练过程是无监督的,因为它不需要标记数据。它的目标是最小化重构误差,即输入数据与解码器输出之间的差异。这可以通过反向传播算法和梯度下降等优化
- 深度学习入门
AI-智能
深度学习人工智能机器学习
概述此学习路径专为有兴趣熟悉和探索深度学习主题的任何人而设计。目前,该学习路径涵盖了深度学习的基础知识,但将来将得到增强,以涵盖有监督和无监督的深度学习概念。深度学习基础知识了解深度学习与机器学习的关系,探索其基础知识,并了解在某些应用中使用深度学习算法的优势。技能水平初学者估计完成时间约2小时。学习目标通过此学习路径,你将获得:对深度学习概念的理解对深度学习架构的理解深度学习框架的比较如何在Te
- 02-深度学习基础知识
洛八斗
在TensorFlow中,tensor是一个类,也是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现tensor和NumPy的多维数组非常类似。然而,tensor提供GPU计算和自动求梯度等更多功能,这些使tensor更加适合深度学习。1TensorFlow基本功能首先用arange创建一个行向量创建一个行向量.png关于constan函数在TensorFlow中表示张量。consta
- 深度学习基础知识神经网络
小森( ﹡ˆoˆ﹡ )
深度学习神经网络人工智能
神经网络1.感知机感知机(Perceptron)是FrankRosenblatt在1957年提出的概念,其结构与MP模型类似,一般被视为最简单的人工神经网络,也作为二元线性分类器被广泛使用。通常情况下指单层的人工神经网络,以区别于多层感知机(MultilayerPerceptron)。尽管感知机结构简单,但能够学习并解决较复杂问题感知机结构与MP模型类似,一般被视为最简单的人工神经网络,也作为二元
- OpenCV完结篇——计算机视觉(人脸识别 || 车牌识别)
源代码•宸
OpenCV计算机视觉opencv人工智能算法经验分享
文章目录Haar人脸识别方法Haar识别眼鼻口Haar+Tesseract进行车牌识别深度学习基础知识dnn实现图像分类Haar人脸识别方法scaleFactor调整哈尔级联器的人脸选框使其能框住人脸官方教程指路每个特征都是通过从黑色矩形下的像素总和减去白色矩形下的像素总和获得的单个值级联器模型文件位置#-*-coding:utf-8-*-importcv2importnumpyasnpcv2.n
- 深度学习基础知识——从人工神经网络开始
无水先生
深度学习机器学习人工智能深度学习人工智能
一、介绍您知道第一个神经网络是在20世纪50年代初发现的吗?深度学习(DL)和神经网络(NN)目前正在推动本世纪一些最巧妙的发明。他们从数据和环境中学习的令人难以置信的能力使他们成为机器学习科学家的首选。深度学习和神经网络是自动驾驶汽车、图像识别软件、推荐系统等产品的核心。显然,它是一种强大的算法,对各种数据类型也具有高度适应性。人们认为神经网络是一个极其难学的课题。因此,要么他们中的一些人不使用
- 基于昇腾CANN的推理应用开发快速体验(Python)
Tianyi Li 1997
pythoncaffe深度学习华为
0.前情提要这是关于一次Ascend在线实验的记录,主要内容是通过网络模型加载、推理、结果输出的部署全流程展示,从而快速熟悉并掌握ACL(AscendComputingLanguage)基本开发流程。注意,为了保证学习和体验效果,用户应该具有以下知识储备:1.熟练的Python语言编程能力2.深度学习基础知识,理解神经网络模型输入输出数据结构1.目录2.最终目标1.了解ACL的基本概念,清楚ACL
- BERT课程
baidu_huihui
BERT课程AIBERT课程
本文是作者即将在CSDN作直播的课程的预备知识,对课程感兴趣但是没有相关背景知识的同学可以提前学习这些内容。新增课程slides和视频回放地址。目录课程视频和slides背景知识深度学习基础知识WordEmbedding语言模型RNN/LSTM/GRU、Seq2Seq和Attention机制Tensorflow基础知识PyTorch基础知识BERT课程视频和slides回放视频地址是这里。课程的s
- 如何学习训练大模型——100条建议
嗯,这是一个好名字
学习
学习训练大模型需要深度学习知识、计算资源、实践经验和一定的方法。以下是学习训练大模型的一般步骤:基础知识:学习深度学习基础知识,包括神经网络结构、损失函数、优化算法等。可以通过在线课程、教科书和教程来学习。编程技能:熟悉深度学习框架(如TensorFlow、PyTorch等)和编程语言(如Python)。掌握数据处理、模型构建和训练的编程技能是关键。数据准备:收集、清理和准备数据集,确保数据的质量
- 如何在深度学习领域取得个人的成功
xw555666
深度学习人工智能
要在深度学习领域取得个人的成功,可以考虑以下建议:学习深度学习的基础知识:首先,建立坚实的深度学习基础知识是非常重要的。你可以学习深度学习的基本概念、神经网络的原理、常用的深度学习框架(如TensorFlow、PyTorch)和数学知识,如线性代数、微积分和概率统计。进行实践项目:深度学习最好通过实际项目来学习。选择一个感兴趣的领域,例如计算机视觉、自然语言处理或增强学习,然后开始构建和训练深度学
- 深度学习推荐系统架构、Sparrow RecSys项目及深度学习基础知识
我是廖志伟
#博主活动深度学习系统架构人工智能
文章目录技术架构:深度学习推荐系统的经典技术架构长啥样?一、深度学习推荐系统的技术架构二、基于用户行为的推荐三、基于多模态数据的推荐四、基于知识图谱的推荐SparrowRecSys:我们要实现什么样的推荐系统?一、SparrowRecSys项目简介二、SparrowRecSys项目的技术架构三、SparrowRecSys项目的价值和意义深度学习基础:你打牢深度学习知识的地基了吗?一、深度学习的基本
- 如何学习深度学习
我是廖志伟
#博主活动学习深度学习人工智能
文章目录如何学习深度学习基础数学知识编程基础知识深度学习基础知识学习资源总结我是廖志伟,一名Java开发工程师、Java领域优质创作者、CSDN博客专家、51CTO专家博主、阿里云专家博主、清华大学出版社签约作者、产品软文创造者、技术文章评审老师、问卷调查设计师、个人社区创始人、开源项目贡献者。跑过十五公里、徒步爬过衡山、有过三个月减肥20斤的经历、是个喜欢躺平的狠人。拥有多年一线研发和团队管理经
- 【深度学习基础知识(一):卷积神经网络CNN基础知识】
CL_Meng77
基础知识深度学习cnn人工智能神经网络机器学习计算机视觉
@深度学习基础知识深度学习基础知识(一):卷积神经网络CNN基础知识卷积神经网络CNN基础知识0、目录1.CNN卷积神经网络的特点2.卷积操作基础知识2.1卷积操作的概念2.2卷积操作的种类2.3卷积操作后特征图谱大小计算公式3.池化操作基础知识3.1池化操作的作用/为什么要进行池化操作?3.2池化操作的种类3.3池化操作后特征图谱大小计算公式1、CNN卷积神经网络的特点CNN的使用范围是具有局部
- 深度学习基础知识 Dataset 与 DataLoade的用法解析
郭庆汝
深度学习人工智能
深度学习基础知识Dataset与DataLoade的用法解析1、Dataset2、DataLoader参数设置:1、pin_memory2、num_workers3、collate_fn分类任务目标检测任务1、Dataset代码:importtorchfromtorch.utilsimportdataclassMyDataset(torch.utils.data.Dataset):def__ini
- 深度学习基础知识数据 数据预处理transforms流程讲解
郭庆汝
深度学习人工智能
深度学习基础知识数据数据预处理transforms流程讲解1、数据预处理2、使用节点2、transform.RandomResizedCrop随机尺寸裁剪缩放3、水平翻转与垂直翻转4、ColorJitter变换5、ToTensor6、Normalization归一化7、transforms.Compose8、重写transforms1、分类任务2、目标检测任务3、分割任务数据增强可以增加训练集的样
- 深度学习基础知识 给模型的不同层 设置不同学习率
郭庆汝
深度学习学习人工智能
深度学习基础知识给模型的不同层设置不同学习率1、使用预训练模型时,可能需要将2、学习率设置方式:1、使用预训练模型时,可能需要将(1)预训练好的backbone的参数学习率设置为较小值,(2)backbone之外的部分(新增的部分,一般为分类头、检测头,等),需要使用较大的学习率。2、学习率设置方式:在定义优化器的时候,用list将参数设置为不同的组,每个组(list中的每个元素)用字典表示,在字
- 深度学习基础知识 最近邻插值法、双线性插值法、双三次插值算法
郭庆汝
深度学习算法人工智能
深度学习基础知识最近邻插值法、双线性插值法、双三次插值算法1、最近邻插值法1、最近邻插值法*最邻近插值:将每个目标像素找到距离它最近的原图像素点,然后将该像素的值直接赋值给目标像素优点:实现简单,计算速度快缺点:插值结果缺乏连续性,可能会产生锯齿状的边缘,对于图像质量影响较大,因此当处理精度要求较高的图像时,通常会采用更加精细的插值算法,例如:双线性插值、三次插值。代码示例:importnumpy
- 深度学习基础知识总结
ThreeS_tones
深度学习神经网络
目录背景深度学习/机器学习/人工智能,计算机视觉/机器视觉/图像处理...的关系监督学习、无监督学习、半监督学习图像分类、目标检测、语义分割、实例分割基础知识激活函数激活函数的作用激活函数一般是非线性的常见的激活函数训练集/验证集/测试集,交叉验证...训练集验证集(开发集)测试集交叉验证目标检测YOLO算法YOLO算法发展过程卷积空洞卷积感受野过拟合噪声IOU搭建模型相关Dropout方法展平P
- 深度学习基础知识 register_buffer 与 register_parameter用法分析
郭庆汝
深度学习人工智能register_buffer
深度学习基础知识register_buffer与register_parameter用法分析1、问题引入2、register_parameter()2.1作用2.2用法3、register_buffer()3.1作用3.2用法1、问题引入思考问题:定义的weight与bias是否会被保存到网络的参数中,可否在优化器的作用下进行学习验证方案:定义网络模型,设置weigut与bias,遍历网络结构参数
- 深度学习基础知识 BatchNorm、LayerNorm、GroupNorm的用法解析
郭庆汝
深度学习batch人工智能
深度学习基础知识BatchNorm、LayerNorm、GroupNorm的用法解析1、BatchNorm2、LayerNorm3、GroupNorm用法:BatchNorm、LayerNorm和GroupNorm都是深度学习中常用的归一化方式。它们通过将输入归一化到均值为0和方差为1的分布中,来防止梯度消失和爆炸,并提高模型的泛化能力1、BatchNormimportnumpyasnpimpor
- 深度学习基础知识 学习率调度器的用法解析
郭庆汝
深度学习学习人工智能
深度学习基础知识学习率调度器的用法解析1、自定义学习率调度器**:**torch.optim.lr_scheduler.LambdaLR2、正儿八经的模型搭建流程以及学习率调度器的使用设置1、自定义学习率调度器**:**torch.optim.lr_scheduler.LambdaLR实验代码:importtorchimporttorch.nnasnndeflr_lambda(x):returnx
- 深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构
郭庆汝
深度学习人工智能torchsummarynetrontensorboardX
深度学习基础知识使用torchsummary、netron、tensorboardX查看模参数结构1、直接打印网络参数结构2、采用torchsummary检测、查看模型参数结构3、采用netron检测、查看模型参数结构3、使用tensorboardX1、直接打印网络参数结构importtorch.nnasnnfromtorchsummaryimportsummaryimporttorchclass
- 深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict
郭庆汝
深度学习人工智能nn.Sequentialnn.ModuleListnn.ModuleDict
深度学习基础知识nn.Sequential|nn.ModuleList|nn.ModuleDict1、nn.Sequential、nn.ModuleList、nn.ModuleDict类都继承自Module类。2、nn.Sequential、nn.ModuleList和nn.ModuleDict语法3、Sequential、ModuleDict、ModuleList的区别4、ModuleDict、
- 【深度学习概述学习小结】
文海傲舟
人工智能python深度学习
深度学习概述学习小结人工智能、机器学习与深度学习关系深度学习深度学习历史深度学习基础知识神经元参数更新与误差反向传播Pytorch代码学习螺旋分类整体思考实验对比继续实验人工智能、机器学习与深度学习关系在人工智能领域,对于人们而言十分复杂而庞大的问题对机器来说也许并不难,因为这些问题可以通过一系列正式的数学表达式来描述,真正困难的问题是那些对于人类来说十分直觉、也许我们将其视为本能的一些问题,例如
- 深度学习基础知识(三)-线性代数的实现
渣渣洒泪成长记
PythonAi与大数据深度学习线性代数人工智能
1.标量使用标量由只有一个元素的张量表示,标量可以做最简单的计算。importtorchx=torch.tensor([3.0])y=torch.tensor([2.0])print(x+y)print(x*y)print(x/y)print(x**y)结果:tensor([5.])tensor([6.])tensor([1.5000])tensor([9.])2.向量使用向量:将标量值组成的列表
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi