最小费用最大流(洛谷-P3381)

题目描述

如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用。

输入输出格式

输入格式:

第一行包含四个正整数N、M、S、T,分别表示点的个数、有向边的个数、源点序号、汇点序号。

接下来M行每行包含四个正整数ui、vi、wi、fi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi),单位流量的费用为fi。

输出格式:

一行,包含两个整数,依次为最大流量和在最大流量情况下的最小费用。

输入输出样例

输入样例#1:

4 5 4 3
4 2 30 2
4 3 20 3
2 3 20 1
2 1 30 9
1 3 40 5

输出样例#1:

50 280

思路:最小费用最大流模版题,利用 zkw 费用流解决

源代码

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair
LL quickPow(LL a,LL b){ LL res=1; while(b){if(b&1)res*=a; a*=a; b>>=1;} return res; }
LL multMod(LL a,LL b,LL mod){ a%=mod; b%=mod; LL res=0; while(b){if(b&1)res=(res+a)%mod; a=(a<<=1)%mod; b>>=1; } return res%mod;}
LL quickPowMod(LL a, LL b,LL mod){ LL res=1,k=a; while(b){if((b&1))res=multMod(res,k,mod)%mod; k=multMod(k,k,mod)%mod; b>>=1;} return res%mod;}
LL getInv(LL a,LL mod){ return quickPowMod(a,mod-2,mod); }
LL GCD(LL x,LL y){ return !y?x:GCD(y,x%y); }
LL LCM(LL x,LL y){ return x/GCD(x,y)*y; }
const double EPS = 1E-10;
const int MOD = 998244353;
const int N = 500000+5;
const int dx[] = {-1,1,0,0,1,-1,1,1};
const int dy[] = {0,0,-1,1,-1,1,-1,1};
using namespace std;

struct Edge {
    int to;
    int next;
    int cap, cost;
} edge[N];
int head[N], tot;
bool vis[N];
int dis[N], level[N];

void addEdge(int x, int y, int cap, int cost) {
    edge[++tot].to = y;
    edge[tot].next = head[x];
    edge[tot].cap = cap;
    edge[tot].cost = cost;
    head[x] = tot;

    edge[++tot].to = x;
    edge[tot].next = head[y];
    edge[tot].cap = 0;
    edge[tot].cost = -cost;
    head[y] = tot;
}

bool SPFA(int S, int T, int n) {
    memset(dis, INF, sizeof(dis));
    memset(vis, false, sizeof(vis));
    memset(level, 0, sizeof(level));
    dis[S] = 0;
    level[S] = 1;
    vis[S] = true;

    deque Q;
    Q.push_back(S);
    while (!Q.empty()) {
        int x = Q.front();
        Q.pop_front();
        vis[x] = false;

        for (int i = head[x]; i != -1; i = edge[i].next) {
            int to = edge[i].to;
            if (dis[to] > dis[x] + edge[i].cost && edge[i].cap > 0) {
                dis[to] = dis[x] + edge[i].cost;
                level[to] = level[x] + 1;
                if (!vis[to]) {
                    vis[to] = true;
                    if (!Q.empty() && dis[to] < dis[Q.front()])
                        Q.push_front(to);
                    else
                        Q.push_back(to);
                }
            }
        }
    }
    return dis[T] != dis[n + 1];
}

bool flag = false;
int dfs(int x, int T, int t, int &flow, int &cost) {
    if (x == T) {
        flow += t;
        flag = true;
        return t;
    }
    int num = 0, newFlow = 0;
    for (int i = head[x]; i != -1; i = edge[i].next) {
        int to = edge[i].to;
        if (t == num)
            break;
        if (dis[x] + edge[i].cost == dis[to] && level[x] + 1 == level[to] && edge[i].cap > 0) {
            newFlow = dfs(to, T, min(t - num, edge[i].cap), flow, cost);

            num += newFlow;
            cost += newFlow * edge[i].cost;

            edge[i].cap -= newFlow;
            edge[i ^ 1].cap += newFlow;
        }
    }
    return num;
}
void zkw(int S, int T, int n) {
    int flow = 0, cost = 0;
    while (SPFA(S, T, n)) {
        flag = true;
        while (flag) {
            flag = false;
            dfs(S, T, INF, flow, cost);
        }
    }
    printf("%d %d\n", flow, cost);
}

int main() {
    int n, m;
    while (scanf("%d%d", &n, &m) != EOF) {
        memset(head, -1, sizeof(head));
        tot = 1;

        int S, T;
        scanf("%d%d", &S, &T);
        for (int i = 1; i <= m; i++) {
            int x, y, cap, cost;
            scanf("%d%d%d%d", &x, &y, &cap, &cost);
            addEdge(x, y, cap, cost);
        }
        zkw(S, T, n);
    }
    return 0;
}

 

你可能感兴趣的:(#,洛谷,#,图论——网络流)