算法题解 - 牛客编程巅峰赛S1第2场 - 青铜&白银组

A. 牛牛扔牌

题目描述

牛牛现在有 n 张扑克牌,每张扑克牌都有点数和花色两部分组成。点数为 ‘1’ - ‘9’ 的正整数,花色为 ‘C’, ‘D’, ‘H’, ‘S’ 其中的一个,分别表示梅花、方块、红桃、黑桃。现在牛牛想按一定的顺序把这n张牌扔掉。扔牌顺序的规则如下:

  1. 如果现在还剩素数张牌,则将牌顶的牌扔掉

  2. 如果现在还剩非素数张牌,则将牌底的牌扔掉

牛牛想知道他的扔牌顺序是什么,请返回扔牌顺序的字符串

备注:

对于 100% 的数据,1 ≤ n ≤ 10。

示例1

输入

"3C8D6H3D"

输出

"3D3C8D6H"

说明

开始 n = 4,为非素数,扔掉牌底的牌 3D
n = 3,为素数,扔掉牌顶的牌 3C
n = 2,为素数,扔掉牌顶的牌 8D
n = 1,为非素数,扔掉牌底的牌 6H

示例2

输入

"8S8S8S8S8S8S8S"

输出

"8S8S8S8S8S8S8S"

说明

因为全是8S,所以扔牌顺序的每一张牌也都是8S

解法

思路分析

由于 n 在 [1, 10] 上,故本题直接把所有素数列出来即可。没什么难度。

时间复杂度:O(n)

空间复杂度:O(n)

代码实现

/**
 * 
 * @param x string字符串 字符串从前到后分别是从上到下排列的n张扑克牌
 * @return string字符串
 */
public String Orderofpoker (String x) {
    int n = x.length() / 2;
    int top = 0, bot = x.length() - 2;
    String res = "";
    while(n > 0){
        if(n == 2 || n == 3 || n == 5 || n == 7){
            res += x.substring(top, top + 2);
            top += 2;
        }else{
            res += x.substring(bot, bot + 2);
            bot -= 2;
        }
        n--;
    }
    return res;
}

B. 疯狂过山车

题目描述

今天牛牛去游乐园玩过山车项目,他觉得过山车在上坡下坡的过程是非常刺激的,回到家之后就受到启发,想到了一个问题。如果把整个过山车的轨道当作是一个长度为 n 的数组 num,那么在过山车上坡时数组中的值是呈现递增趋势的,到了最高点以后,数组中的值呈现递减的趋势,牛牛把符合这样先增后减规律的数组定义为金字塔数组,请你帮牛牛在整个 num 数组中找出长度最长的金字塔数组,如果金字塔数组不存在,请输出 0。

备注:

1 <= n <= 1000000,且 num 数组中的数 0 <= num[i] <= 1000000。

示例1

输入

4,[1,2,3,1]

输出

4

示例2

输入

5,[1,5,3,3,1]

输出

3

解法一:直观解法

思路分析

在遍历的时候判断是否是金字塔数组即可。当前数字 i 和前一个数字 j 比较有三种情况:

  1. i > j,说明数组处于爬升阶段,若 j 是低谷则对长度 len 初始化为 1。len++。
  2. i = j,必定不是金字塔,初始化 len 为 1。
  3. i < j,若之前处于爬升阶段,说明是金字塔,len++,并且和金字塔最大长度 res 作比较。

时间复杂度:O(n)

空间复杂度:O(1)

代码实现

/**
 * 
 * @param n int整型 
 * @param num int整型一维数组 
 * @return int整型
 */
public int getMaxLength (int n, int[] num) {
  // write code here
  int res = 0;
  int len = 1;
  boolean up = false;
  for(int i = 1; i < n; i++) {
    if(num[i] > num[i - 1]) {
      up = true;
      if(i > 1 && num[i - 1] < num[i - 2]) len = 1;
      len++;
    }else if(num[i] == num[i - 1]) {
      len = 1;
      up = false;
    }else {
      if(up) {
        len++;
        res = Math.max(len, res);
      }
    }
  }
  return res;
}

解法二:寻找金字塔顶法

思路分析

金字塔数组长度 = 爬升阶段长度 + 1 (塔顶) + 下降阶段长度。

下降阶段相当于从右往左遍历时的爬升阶段

因此分别用 l 数组r 数组记录从左到右从右到左的爬升阶段长度。

若 l[i] 和 r[i] 都不为 0,说明 i 是塔顶。

时间复杂度:O(n)

空间复杂度:O(n)

代码实现

/**
 * 
 * @param n int整型 
 * @param num int整型一维数组 
 * @return int整型
 */
public int getMaxLength (int n, int[] num) {
  int res = 0;
  int[] l = new int[n];
  int[] r = new int[n];
  for(int i = 1; i < n; i++){
    if(num[i] > num[i - 1]) l[i] = l[i - 1] + 1;
  }
  for(int i = n - 2; i >= 0; i--){
    if(num[i] > num[i + 1]) r[i] = r[i + 1] + 1;
  }
  for(int i = 0; i < n; i++){
    if(l[i] != 0 && r[i] != 0) res = Math.max(res, l[i] + r[i] + 1);
  }
  return res;
}

C. 牛牛的棋盘

题目描述

牛牛最近在家里看到一个棋盘,有 n * m 个格子,在棋盘旁边还放着 k 颗棋子,牛牛想把这 k 颗棋子全部放在 n * m 的棋盘上,但是有一个限制条件:棋盘的第一行、第一列、最后一行和最后一列都必须有棋子。牛牛想知道这样的棋子放法到底有多少种,答案需要对 1e9 + 7取模。

备注:

2 <= n, m <= 30; 1 <= k <=1000

示例1

输入

2,3,1

输出

0

说明

就1颗棋子,所以无法满足条件。

示例2

输入

2,2,2

输出

2

说明

我们可以把第1颗棋子放在左上角,第2颗棋子放在右下角;也可以把第1颗棋子放在右上角,第2颗棋子放在左下角。故而有2种放法。

解法:容斥原理

思路分析

本题需要具备高中的数学知识:容斥原理和排列组合数。涉及的数学公式会在题解中给出,如果有看不明白的地方可以自行查询相关数学概念。

记行 i 上无棋子的集合为 S r i S_{ri} Sri, 列 j 上无棋子的集合为 S c j S_{cj} Scj。根据容斥原理,有
r e s = ∣ S r 1 ∩ S r n ∩ S c 1 ∩ S c m ∣ = a l l − | S r 1 ∪ S r n ∪ S c 1 ∪ S c m ∣ = a l l − ∑ C ⊆ U ( − 1 ) s i z e ( C ) − 1 ∣ ∩ e ∈ C e ∣ \begin{aligned} res &= ∣S_{r1} ∩ S_{rn} ∩ S_{c1} ∩ S_{cm}∣ \hspace{100cm}\\ &= all - |S_{r1} ∪ S_{rn} ∪ S_{c1} ∪ S_{cm}∣\\ &= all - \sum_{C \subseteq U}(-1)^{size(C) - 1}|\cap_{e \in C} e| \end{aligned} res=Sr1SrnSc1Scm=allSr1SrnSc1Scm=allCU(1)size(C)1eCe
其中, U = { S r 1 , S r n , S c 1 , S c m } U = \{S_{r1}, S_{rn}, S_{c1}, S_{cm}\} U={Sr1,Srn,Sc1,Scm}

由于 U U U 中只包含四个集合,因此可以用 4 个 bit 分别表示是否交集合 S i S_i Si

总共有 2 4 − 1 = 15 2^4 - 1 = 15 241=15 种交集情况,再加上 all ,共计 16 种情况。

排列组合数可以利用公式 C m n = C m − 1 n + C m − 1 n − 1 C_m^n = C_{m - 1}^n + C_{m - 1}^{n - 1} Cmn=Cm1n+Cm1n1 迭代计算得出。

代码实现

final int mod = (int)1e9 + 7;
/**
 * 
 * @param n int整型 
 * @param m int整型 
 * @param k int整型 
 * @return int整型
 */
public int solve (int n, int m, int k) {
  if(k < 2) return 0;
  int[][] C = initC();
  int res = 0;
  for(int i = 0; i < 16; i++){
    int r = n, c = m, cnt = 0;
    if((i & 1) != 0) {r--; cnt++;}
    if((i & 2) != 0) {r--; cnt++;}
    if((i & 4) != 0) {c--; cnt++;}
    if((i & 8) != 0) {c--; cnt++;}
    res = (res - ((cnt & 1) * 2 - 1) * C[r * c][k]) % mod;
  }
  return (res + mod) % mod;
}

public int[][] initC(){
  int n = 1000;
  int[][] C = new int[1001][1001];
  for(int i = 1; i <= n; i++) C[i][0] = C[i][i] = 1;
  for(int i = 2; i <= n; i++){
    for(int j = 1; j < i; j++){
      C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod;
    }
  }
  return C;
}

写在最后

大家好,我是往西汪,一位坚持原创的新人博主。
如果本文对你有帮助,请点赞、评论二连。你的支持是我创作路上的最大动力。
谢谢大家!
也欢迎来公众号【往西汪】找我玩耍~

你可能感兴趣的:(#,算法题解)